
Асинхронные машины
.pdf
Конструкция массивного ротора — более простая и механически значительно более прочная и надежная, чем полого ротора и ротора с беличьей клеткой, собранного из тонких листов. Этим и объясняется, что двигатели с массивным стальным ротором в настоящее время выполняются на очень большие частоты вращения (до 120000—150000 об/мин).
К недостаткам рассматриваемого двигателя, препятствующим его применению взамен обычного короткозамкнутого двигателя, следует отнести относительно низкий максимальный момент Мм из-за повышенного индуктивного сопротивления х2 ротора, большие потери в роторе и, следовательно, низкий к.п.д.
3-24. Асинхронные тахометрические генераторы
Тахометрические генераторы сокращенно называются тахогенераторами. Они служат для преобразования механического вращения в электрический сигнал (напряжение) и широко применяются в настоящее время в схемах различных автоматических устройств, в частности, для автоматизированного электропривода. Они могут также служить для измерения частоты вращения вместо обычных механических тахометров.
Наибольшее распространение из тахогенераторов переменного тока получили асинхронные тахогенераторы с немагнитным полым ротором, по выполнению не отличающиеся в основном от соответствующих исполнительных двигателей (см. рис. 3-100).
Принципиальная схема включения такого асинхронного тахогенератора показана на рис. 3-
102.
Рис. 3-102. Схема включения асинхронного тахогенератора (к объяснению принципа действия).
Здесь также на статоре расположены две обмотки d и q, оси которых — продольная и поперечная — сдвинуты в пространстве на 90 эл. град.
К обмотке d подводится переменное напряжение Ud, имеющее постоянные амплитуду и частоту; тогда при вращении ротора тахогенератора на зажимах обмотки q возникает напряжение Uq. Это напряжение будет иметь ту же частоту, что и Ud, и практически будет изменяться пропорционально частоте вращения ротора.
Принцип действия асинхронного тахогенератора основан на следующем.
Будем считать, что к обмотке d подведено напряжение Ud = const при fi = const. Если при этом ротор неподвижен, то возникнет переменный магнитный поток, пульсирующий с частотой f1 по оси обмотки d, аналогичный потоку трансформатора при короткозамкнутой вторичной обмотке. Роль последней в тахогенераторе выполняют контуры ротора, оси которых совпадают с осью обмотки d.
Если ротор вращается, то мы можем мысленно представить себе, что контуры с продольной осью как бы неподвижны в пространстве, так как на смену одним проводникам этих контуров

непрерывно поступают другие. Следовательно, как и при неподвижном роторе, в них будут наводиться продольным потоком Фd э.д.с. трансформации edт, имеющие частоту f1. Но теперь будем иметь также контуры, в которых будут наводиться э.д.с. вращения eqвр, от пересечения проводниками магнитных линий потока Фd. Оси этих контуров будут совпадать с поперечной осью, и возникшие в них токи будут создавать поперечную н.с. и, следовательно, поперечный поток Фq.
Можем принять, что э.д.с. вращения в поперечном контуре равна:
eqвр |
2lvBq . |
|
|
|
|
|
|
|
|
|
|
|
|
v |
|
πDn |
|
|
|
|
|
|
|
|
|
|
Если |
сюда |
подставить |
окружную частоту ротора |
|
60 , индукцию в зазоре |
|||
|
|
|||||||
Bq c1 dм sin ωt |
c1 |
dм sin 2πf1t |
(Ф. —амплитуда продольного |
|
потока; c1 — коэффициент |
|||
пропорциональности), то получим: |
|
|
|
|
||||
eqвр |
c2 n |
dм sin 2πf1t |
|
|
|
|
|
(c2 — также коэффициент пропорциональности). Из последнего равенства следует, что э.д.с. вращения в поперечных контурах пропорциональны частоте вращения n, имеют частоту f1 и находятся или в фазе, или в противофазе с потоком Фd. Такую же частоту f1 будут иметь токи,
вызванные э.д.с. eqвр в поперечных контурах, и созданный ими поток Фq, пульсирующий по поперечной оси. Поток Фq, приблизительно пропорциональный частоте вращения n, будет наводить
в поперечных контурах ротора э.д.с. трансформации eqт и в то же время э.д.с. Еqт в обмотке статора q.
Электродвижущие силы eqт будут направлены почти прямо противоположно по отношению к
э.д.с. eqвр ; их результирующие будут создавать токи в поперечных контурах. Если поперечные контуры заменить эквивалентной поперечной обмоткой, приведенной к обмотке статора q, то ее
можно рассматривать как первичную обмотку трансформатора, а э.д.с. вращения Eqвр такой обмотки
— как подведенное к ней напряжение. Тогда Еqт — э.д.с. трансформации, наведенная потоком Фq в
этой эквивалентной обмотке. Она сдвинута по фазе почти на 180 град относительно э.д.с. Eqвр .
Напряжение U q найдем, если вычтем из Eqт падения напряжения в обмотке q.
Тот же поток Фq будет наводить э.д.с. вращения edвр в продольных контурах ротора, которые будут пропорциональны частоте вращения n, иметь частоту f1 и находиться в противофазе или в фазе с потоком Фq. Если также заменить продольные контуры ротора эквивалентной продольной обмоткой, приведенной к обмотке статора d, то ее можно рассматривать как обмотку трансформатора, а э.д.с. трансформации Еdт такой обмотки — как подведенное к ней напряжение.
Электродвижущая сила вращения Edвр , наведенная потоком Фq в этой эквивалентной продольной
|
|
|
обмотке, будет сдвинута по фазе относительно э.д.с. Edт |
почти на 180 град. Напряжение U d |
будет |
иметь составляющую — Edт и составляющие, равные падениям напряжения в обмотке d.
Количественные соотношения, определяющие напряжение U q при заданных напряжении
U d и частоты вращения n могут быть найдены из решения комплексных уравнений, составленных на основе представленной выше физической картины процессов в тахогенераторе.

Путем подбора параметров тахогенератора и внешней нагрузки Zн удается свести его погрешности до очень малых значений. Под погрешностями здесь понимаются отклонение
зависимости Uq = f(n) от линейной и отклонение сдвига между U d и U q от 90 град.
3-25. Асинхронный преобразователь частоты
Электрическую энергию на заводах, фабриках, при строительных работах, в шахтах, сельском хозяйстве обычно получают от сети трехфазного тока нормальной частоты 50 Гц. Для преобразования тока в другую частоту может быть использован асинхронный преобразователь частоты, представляющий собой асинхронную машину с контактными кольцами, приводимую во вращение каким-либо двигателем. Приводным двигателем обычно служит короткозамкнутый асинхронный двигатель.
Асинхронные преобразователи частоты широко применяются для повышения частоты тока, например, в тех случаях, когда для питания быстроходных асинхронных двигателей требуется ток более высокой частоты, чем 50 Гц. Другие агрегаты для преобразования частоты тока (например, синхронный генератор с приводным двигателем) в тех же случаях оказываются более дорогими, особенно при небольших мощностях.
На рис. 3-103 представлена принципиальная схема включения асинхронного преобразователя частоты. Обмотка статора преобразователя (П) приключается к первичной сети нормальной частоты f1, а его обмотка ротора через посредство контактных колец и щеток — ко вторичной сети частоты f2. Приводной двигатель (Д) также приключается к первичной сети.
Рис. 3-103. Схема включения асинхронного преобразователя частоты.
Для повышения частоты (f2 > fi) ротор преобразователя приводится во вращение против поля. Тогда э.д.с. E2s = sпE2, наведенная в его обмотке, будет иметь частоту f2 = sпf1 > fi, так как при вращении против поля скольжение преобразователя sп > l.
Полная электрическая мощность Рэ2 цепи ротора при s > l складывается из мощности Рэм,
перенесенной вращающимся полем со статора на ротор, и мощности P2 , полученной в результате преобразования механической мощности, подведенной к преобразователю со стороны двигателя.
В соответствии с известными соотношениями [см. (3-69) и (3-70а)] можем написать:
Pэм |
1 |
Pэ2 |
Р2 |
sп |
1 |
Рэ2 |
|
sп |
sп |
|
|
||||
|
|
и |
|
. |
(3-241) |
||
|
|
|
|
|
Если двигатель имеет рд пар полюсов, а преобразователь рп пар полюсов, то скольжение преобразователя

sп |
n1 n2 |
|
pп рд |
|
|
n1 |
|
рд |
, |
(3-242) |
|
|
|
||||
|
|
|
|
где n1 — частота вращения поля преобразователя;
n2 — частота вращения его ротора (скольжением двигателя пренебрегаем).
Допустим, что в машинах нет потерь. Тогда будем иметь (рис. 3-103) Рэ2 = Р (мощности
вторичной сети); Рэм = |
Рп (мощности |
преобразователя) и P2 = Рд (мощности двигателя). |
||||||||
Соотношения между указанными мощностями получим, подставив (3-242) в (3-241): |
||||||||||
Pп |
|
pд |
|
Р Pд |
|
|
pп |
|
Р |
|
рп |
|
рд |
|
рп |
|
рд |
|
|||
|
|
и |
|
|
. |
(3-243) |
||||
|
|
|
|
|
|
|
|
Если преобразователь служит, например, для преобразования тока частоты f1 =50 Гц в ток частоты f2 = 150 Гц, то его скольжение sп = f2/f1 = 3, что согласно (3-242) можно получить при рд = 1 и
рп = 2; тогда по (3-243) Рп = 0,33Р и Рд = 0,67Р.
Действительные мощности, потребляемые преобразователем и двигателем из первичной сети, будут из-за потерь больше примерно на 25 — 35% для преобразователей небольшой мощности (5 — 30 кВА при cosθ2 = 0,8 0,75). Следует также учитывать, что через вал к преобразователю подводится только активная мощность, тогда как реактивная мощность для вторичной сети и для самого преобразователя подводится через его статор.
К недостаткам асинхронного преобразователя частоты следует отнести довольно большое падение напряжения U2 на его вторичных зажимах при переходе от холостого хода к номинальной нагрузке (до 10 — 30% при cosθ2 = 1 0,7). Регулирование U2 здесь возможно путем изменения U1 на первичных зажимах, что на практике применяется очень редко.
В большинстве случаев нагрузку преобразователя со вторичной стороны составляют асинхронные двигатели. Тогда при переходе этих двигателей от работы вхолостую к работе с нагрузкой изменение U2 будет небольшим в соответствии с небольшим изменением потребляемой ими реактивной мощности.
При изготовлении асинхронных преобразователей частоты могут быть использованы части нормальных (серийных) асинхронных двигателей с контактными кольцами. Однако при этом следует иметь в виду, что частота перемагничивания ротора велика (f2 = sпf1). Поэтому необходимо существенно снизить значения индукции в его зубцах и ярме.
Для преобразователя можем написать следующие уравнения напряжений и токов:
U1 |
|
E1 |
I1 (r1 |
jx1 ); |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
sп E2 |
I |
2 (r2 |
|
jx2 sп ) I |
2 |
(R jX sп ) I |
2 (r2 |
jx2 sп ) U |
2 |
; |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
r2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U 2 |
|
|
|
|
|||
E2 |
|
E1 |
|
I 2 |
( |
|
jx2 ) |
|
|
|
|
|
|
|
|
|
sп |
|
sп ; |
|
|
|
|
||||||
I1 |
I 2 |
|
Ioc , |
|
|
|
|
|
|
|
|
|
|

где U 2 , R и X' — приведенные к обмотке статора вторичное напряжение и сопротивления нагрузки преобразователя. Этим уравнениям соответствует диаграмма пpeoбpaзoвaтeля, работающего с нагрузкой, представленная на рис. 3-104.
Рис. 3-104. Векторная диаграмма асинхронного преобразователя частоты.
3-26. Поворотные автотрансформаторы
Поворотным автотрансформатором (применяется также название «индукционный регулятор») будем называть асинхронную машину, работающую с заторможенным ротором в качестве автотрансформатора и позволяющую путем поворота ротора регулировать напряжение на
еевторичных зажимах.
Втрехфазном поворотном автотрансформаторе на роторе помещается трехфазная обмотка с выведенными концами в виде гибких проводников, соединенных с обмоткой статора и позволяющих поворачивать ротор на углы в пределах от 0 до 180 эл. град. Обычная его схема приведена на рис. 3- 105.
Рис. 3-105. Схема трехфазного поворотного автотрансформатора.
Обмотка ротора здесь служит первичной обмоткой. Она соединена в звезду (может быть соединена и треугольником). Обмотка статора служит добавочной обмоткой. На ее вторичных
зажимах получается регулируемое напряжение 3U 2 .
Можно также в качестве первичной обмотки использовать обмотку статора, а в качестве добавочной — обмотку ротора. Тогда от последней должно быть выведено шесть гибких проводников.
Иногда на практике в качестве трехфазного поворотного автотрансформатора используется машина с контактными кольцами, предназначенная для работы двигателем. В этом случае обычно приходится заменять обмотки ротора и статора другими обмотками с числами витков (на фазу), соответствующими напряжению U1 и заданным пределам регулирования напряжения U2.

При холостом ходе поворотного автотрансформатора ток будет проходить только по обмотке ротора, которая создает при этом вращающееся магнитное поле. Это поле будет наводить в обмотках
э.д.с. E1 и E2 . Электродвижущая сила E1, обмотки ротора будет почти полностью уравновешивать
|
|
|
|
|
|
|
|
|
|
|
напряжение U1 |
(U1 |
E1 ). Электродвижущая сила |
E2 |
обмотки статора |
будет складываться |
с |
||||
|
|
; |
|
|
|
|
|
|
Поворачивая ротор |
по |
напряжением (U1 |
следовательно, вторичное напряжение U |
2 |
U1 |
E2 . |
вращению или против вращения поля, мы будем изменять взаимное расположение осей обмоточных
фаз статора и ротора и, следовательно, фазу э.д.с. E2 относительно фазы напряжения U1 . В
соответствии с этим, как показано на рис. 3-106, будет изменяться напряжение U2 от U2макс = U1 + E2 до U2мин = U1 — Е2. При нагрузке напряжение U2 будет несколько отличаться от соответствующего
напряжения при холостом ходе вследствие падений напряжения в обмотках статора и ротора.
Рис. 3-106. Диаграмма напряжений трехфазного поворотного автотрансформатора, работающего вхолостую, при различных положениях ротора относительно статора.
Поворотный автотрансформатор в отношении охлаждения работает в более тяжелых условиях, чем асинхронный двигатель. Небольшие поворотные автотрансформаторы выполняются с воздушным охлаждением. При большой мощности иногда применяется масляное охлаждение, так же как для масляных трансформаторов.
Для поворота ротора обычно используется червячная передача, причем она должна быть механически достаточно прочной, так как вращающий момент, действующий на ротор при нагрузке поворотного автотрансформатора, достигает больших значений.
Трехфазные поворотные автотрансформаторы применяются в лабораториях, в схемах автоматики и иногда для регулирования напряжения в распределительных сетях.
На практике находят себе применение также однофазные поворотные автотрансформаторы. Обычная схема такого автотрансформатора представлена на рис. 3-107.
Рис. 3-107. Схема однофазного поворотного автотрансформатора.

Здесь однофазная обмотка ротора 1 является первичной обмоткой; обмотка статора 2 — добавочной обмоткой. При отсутствии тока в обмотке статора (холостой ход) н.с. создается только обмоткой ротора 1. Ее можно заменить по отношению к оси обмотки статора двумя н.с.: продольной F1cos α и поперечной F1sin α , где α — угол между осями обмоток 1 и 2. Очевидно, что в обмотке статора будет наводиться э.д.с. полем, созданным только продольной н.с. F1cos α . Эта э.д.с., следовательно, может быть принята равной F2cos α . При α = 0 получается максимальная э.д.с. Е2, при α = 90 эл. град она равна нулю, при дальнейшем увеличении α сверх 90 эл. град э.д.с. меняет фазу и при 180 эл. град становится равной — Е2. Поэтому при холостом ходе U2 = U1 + F2cos α ; предельные значения: U2макс = U1 + E2 и U2мин = U1 - E2. При нагрузке одновременно с возрастанием тока в статорной обмотке будет возрастать ток в обмотке ротора 1, чтобы результирующая н.с., действующая по оси обмотки 1, создавала поле, необходимое для получения в этой обмотке э.д.с. Е1,
почти равной Ui(U1 E1 ). Для компенсации н.с. F2sin α на роторе должна быть помещена короткозамкнутая обмотка 3, ось которой перпендикулярна к оси обмотки 1. При отсутствии обмотки 3 н.с. F2sinα вызвала бы сильное поле, которое обусловило бы большое индуктивное падение напряжения в обмотке 2.
Здесь также возможно первичную обмотку поместить на статоре, а добавочную — на роторе. В этом случае короткозамкнутая обмотка для компенсации поперечной н.с. ротора помещается на статоре; ось ее должна быть сдвинута на 90 эл. град относительно оси обмотки статора.
Однофазные поворотные автотрансформаторы на практике применяются сравнительно редко и выполняются обычно на небольшие мощности.
3-27. Поворотные трансформаторы
Асинхронная машина при заторможенном роторе может быть использована в качестве преобразователя m1-фазного тока в m2-фазный ток: например, трехфазного тока в пятиили семифазный ток Для этого ее обмотки статора и ротора должны быть выполнены соответственно на m1 и m2 фаз. Машина будет работать как трансформатор, в котором энергия со статора на ротор будет передаваться вращающимся полем. Такие преобразователи применяются крайне редко и только для специальных целей.
На практике нашли себе применение поворотные трансформаторы, выполняемые так же, как асинхронные машины, и имеющие устройство, позволяющее поворачивать их ротор. Рассмотрим сначала машину, которая со стороны статора получает питание от сети трехфазного тока. Если к зажимам ее статора подводится постоянное напряжение, то при повороте ротора на зажимах его обмотки будем получать напряжение, изменяющееся только по фазе. Такие поворотные трансформаторы называются фазорегуляторами и применяются, например, для регулирования фазы сеточного напряжения ртутного выпрямителя или тиратрона и в измерительной технике, причем в последнем случае главным образом для поверки ваттметров и счетчиков (рис 3-108).
Рис. 3-108. Поворотный трансформатор для поверочных устройств.

На рис. 3-109 показана принципиальная схема поверки счетчика переменного тока с применением поворотного трансформатора.
Рис. 3-109. Принципиальная схема поверки счетчика при помощи поворотного трансформатора
(ПТ).
Здесь цепи тока и напряжения поверяемого счетчика Wh и контрольного ваттметра W питаются от общей сети, но через два различных трансформатора, причем цепи напряжения приключены к зажимам ротора поворотного трансформатора. Поворот ротора будет вызывать изменение фазы напряжения на зажимах счетчика и ваттметра, значение же напряжения при этом не будет изменяться. Приведенная схема позволяет получать любой сдвиг фаз между напряжением параллельных цепей счетчика и ваттметра и током их последовательных цепей.
Подобные способы поверки, при которых цепи напряжения и тока измерительных приборов независимы одна от другой, носят название способов фиктивной нагрузки, так как в этих случаях измерительные приборы учитывают фиктивную мощность, равную произведению тока, напряжения
иcosθ двух различных цепей.
Всхемах автоматических устройств (например, счетно-решающих) нашли себе широкое применение поворотные трансформаторы малой мощности. К ним обычно подводится питание со стороны статора от источника однофазного тока. При этом на обмотке ротора (на выходе) требуется получить напряжение, представляющее собой определенную функцию угла поворота ротора α. Обычно требуется, чтобы это напряжение было пропорционально sinα, cosα или было связано с углом α линейной зависимостью. В соответствии с этим различают синусные, косинусные, синускосинусные и линейные поворотные трансформаторы.
На рис. 3-110 представлена принципиальная схема двухполюсного поворотного трансформатора с двумя - взаимно-перпендикулярными обмотками на статоре и на роторе.
Рис. 3-110. Схема соединений обмоток синус-косинусного поворотного трансформатора.
Назовем оси обмоток статора S и K соответственно продольной (d) и поперечной (q) осями поворотного трансформатора. Его обмотка статора S включается на переменное напряжение Us. При этом возникает продольное пульсирующее поле, которое будет наводить в обмотках ротора А и В

э.д.с. Их значения зависят от угла поворота ротора а, который будем отсчитывать от положения ротора, когда ось его обмотки А совпадает с поперечной осью q.
Очевидно, что при строго синусоидальном распределении поля в зазоре вдоль окружности ротора и при отсутствии нагрузки с вторичной стороны напряжение на обмотке А при повороте ротора будет изменяться пропорционально sinα, a напряжение на обмотке В — пропорционально cosα. Таким образом, при использовании той или другой обмотки ротора получим синусный или косинусный, а при использовании обеих обмоток ротора — синус-косинусный поворотный трансформатор.
К поворотным трансформаторам предъявляются весьма высокие требования в отношении точности соблюдения указанных зависимостей вторичных напряжений от угла α. Эти требования могут быть удовлетворены только при применении специальных обмоток, обеспечивающих близкие к синусоидальным кривые их н.с., при слабом насыщении стальных участков магнитной цепи поворотного трансформатора и при самом тщательном изготовлении его деталей. Кроме того, большое значение имеет правильный выбор чисел пазов статора и ротора и применение скоса пазов ротора или статора.
Напряжения на зажимах вторичных обмоток и при их нагрузке будут пропорциональны sinα и cosα, если эти обмотки и приключенные к ним внешние сопротивления одинаковы. При таком выполнении схемы получается так называемое симметрирование поворотного трансформатора на вторичной стороне. В этом случае поперечные н.с. обеих обмоток ротора, действующие всегда в противоположные стороны, равны между собой при любом α. Здесь, следовательно, не будет возникать поперечный поток, который в обмотке А создавал бы э.д.с., пропорциональную cos2α, а в обмотке В — э.д.с., пропорциональную sin2α. Кроме того, при указанном симметрировании вторичных цепей ротора сумма продольных н.с. его обеих обмоток не будет зависеть от угла α, поэтому и ток в обмотке S статора при Us = const будет сохранять свое значение, что приводит к постоянному значению продольного потока, не зависящему от угла α. Обмотка K на статоре замыкается обычно накоротко или на сопротивление, равное сопротивлению источника однофазного тока, если мощность его невелика. В этом случае получается симметрирование поворотного трансформатора на первичной стороне, которое также препятствует возникновению поперечного потока, например при некотором различии внешних сопротивлений вторичных цепей.
Схема линейного поворотного трансформатора приведена на рис. 3-111.
Рис. 3-111. Схема соединений обмоток линейного поворотного трансформатора.
При такой схеме, где также применяется симметрирование на вторичной стороне, удается получить линейную зависимость напряжения на зажимах последовательно соединенных обмоток K. и А от угла поворота ротора а с точностью до 0,1% примерно в пределах изменения α от - 37 до + 37°.
3-28. Асинхронная машина двойного питания
Если статорная и роторная обмотки асинхронной машины получают питание от сети (или сетей) переменного тока, то такую машину называют асинхронной машиной двойного питания. При этом обычно имеется в виду трехфазная машина, обмотки которой получают питание от одной и той же сети трехфазного тока. Эти обмотки могут включаться параллельно или последовательно.

Название «машина двойного питания» характеризует схему включения ее обмоток, а не ее рабочие свойства, которые будут различными в зависимости от направления вращения н с статора и ротора.
Рассмотрим сначала машину с последовательно соединенными обмотками статора и ротора, создающими н.с, вращающиеся в одну и ту же сторону. В этом случае получается регулируемая (поворотная) реактивная катушка, позволяющая путем поворота ротора изменять в широких пределах ее индуктивное сопротивление. При повороте ротора изменяется угол α между осями н.с. последовательно включенных обмоток статора и ротора, вследствие чего изменяется их взаимная индуктивность.
Общее активное сопротивление машины (на фазу) r = r1 + r2 = const, и ее общее индуктивное сопротивление x = x1 + x2 + x1г + x2г + 2x12сosα, где x1 и х2 — индуктивные сопротивления рассеяния обмоток; x1г и x2г — их главные индуктивные сопротивления (от главного потока в воздушном зазоре), х12 — индуктивное сопротивление взаимной индукции при совпадении осей н.с. обмоток, когда они направлены в одну сторону. Чтобы получить изменение х в возможно более широких пределах, надо обмотки выполнить с равными эффективными числами витков Тогда x1г = x2г = x12, x1 x2 и мы получим:
x 2(x1 x1г x12 cosα) .
Следовательно, предельные значения при α = 0 и α = 180°:
xмакс 2(x1 2x1г ) и xмин 2x1 .
При параллельном включении одинаковых обмоток статора и ротора предельные значения х уменьшаются в 4 раза. Поворотная реактивная катушка находит себе применение при испытании электрических машин и трансформаторов, когда необходимо, например, изменять их индуктивную нагрузку.
Если обмотки статора и ротора асинхронной машины, приключенные к одной и той же сети, создают н.с., вращающиеся в разные стороны, то такая асинхронная маши
на двойного питания может работать как двигатель или генератор. Однако для этого ее надо предварительно разогнать посторонним двигателем до скорости вращения, равной двойной синхронной 2n1. Тогда после подключения обмоток к сети их н.с. будут вращаться в пространстве с одной и той же синхронной скоростью и, следовательно, будут неподвижны одна относительно другой. Созданное их совместным действием магнитное поле будет вращаться с синхронной частотой n1 относительно каждой из обмоток и будет наводить в них э.д.с. частоты сети.
Будем считать, что обмотки статора и ротора одинаковы и что они продключены к сети параллельно. При отсутствии потерь в маши не и при работе ее вхолостую в обмотках будут только намагничивающие токи и созданные ими н.с. будут равны и направлены в одну и ту же сторону. Поле, созданное результирующей н.с., будет наводить э.д.с. в обмотках, почти полностью уравновешивающие приложенные к ним напряжения, что возможно только при частоте вращения ротора, равной 2n1. При отклонении от этой частоты в обмотках возникнут токи, которые можно назвать синхронизирующими, так как созданный ими вращающий момент восстанавливает частоту 2n1. Следовательно, машина обладает свойствами синхронной машины.
При нагрузке машины оси н.с. статора и ротора не будут совпадать, между ними установится некоторый сдвиг в пространстве, но они по-прежнему будут вращаться относительно статора с частотой n1 при частоте ротора 2п1. При этом токи в обмотках увеличиваются, создается вращающий момент, направленный в сторону вращения ротора при работе машины двигателем и против вращения ротора при работе машины генератором, в чем можно было бы убедиться, построив диаграммы напряжений и токов для обмоток. Из диаграмм было бы видно, что при двигательном режиме ток в обмотке сдвинут по фазе относительно э.д.с., наведенной главным полем, на угол,