Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Развитие газовой турбины.docx
Скачиваний:
114
Добавлен:
10.06.2015
Размер:
47.85 Кб
Скачать

Казанский Государственный Энергетический Университет

Реферат

на тему "Развитие газовой турбины"

Выполнил: Сахабутдинов Рафис

студент 1 курса очного отделения

специальность - Энергетические

системы и сети

группа ЭЭ - 6 - 14

Проверила: Моисеева Регина Рафаиловна

Казань

2014 год

Содержание:

Введение

1. История

2. Принцип работы

3. Типы газовых турбин

3.1 Авиационные и реактивные двигатели

3.2 Вспомогательная силовая установка

3.3 Промышленные газовые турбины для производства электричества

3.3.1 Хранилища сжатого воздуха

3.4 Турбо-вальные двигатели

3.5 Радиальные газовые турбины

3.6 Размерные реактивные двигатели

3.7 Микро-турбины

4.Внешнее сгорание

5.Использование в транспортных средствах

6. Преимущества и недостатки газотурбинных двигателей

6.1 Преимущества газотурбинных двигателей

6.2 Недостатки газотурбинных двигателей

7. Заключение

8. Литература

Введение

Газовая турбина— это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки, закреплённые на дисках) и статора (направляющие лопатки, закреплённые в корпусе).Газ, имеющий высокую температуру и давление, поступает через сопловой аппарат турбины в область низкого давления за сопловой частью, попутно расширяется и ускоряется. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Полезные свойства газовой турбины: газовая турбина, например, приводит во вращение находящийся с ней на одном валу генератор, что и является полезной работой газовой турбины.Газовые турбины используются в составе газотурбинных двигателей (применяются для транспорта) и газотурбинных установок (применяются на ТЭЦ в составе стационарных ГТУ, ПГУ).

1. История

I в. н.э.: Паровая турбина Герона Александрийского — на протяжении столетий расcматривалась как игрушка и её полный потенциал не был изучен.

1500: В чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.

1551: Таги-аль-Дин придумал паровую турбину, которая использовалась для питания самовращающегося вертела.

1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице Джованни Бранка.

1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.

1791: Англичанин Джон Барбер получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.

1872: Франц Столц разработал первый настоящий газотурбинный двигатель.

1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно "Турбиния". Этот принцип тяги используется до сих пор.

1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кэмбридже и использовались для электрического освещения улиц города.

1903: Норвежец, Эджидиус Эллинг, смог построить первую газовую турбину, которая могла произвести больше энергии, чем требовалось для её работы, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 л.с. (существенно для того времени).

Его работа впоследствии была использована сэром Фрэнком Уиттлом.

1913: Никола Тесла запатентовал турбину Тесла, основанную на эффекте граничного слоя.

1918: General Electric, один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.

1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором Аланом Арнольдом Грифицем.

1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения. Впервые этот двигатель был успешно использован в апреле 1937.

1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.

1936: Ханс фон Охайн и Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.

2. Принцип работы

Газовые турбины описываются термодинамическим циклом Брайтона, в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

На практике, трение и турбулентность вызывают:

Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.

Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.

Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Цикл Брайтона

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Эта машина имеет одноступенчатый радиальный компрессор, турбину, рекуператор, и воздушные подшипники.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь

одну движущуюся часть: вал / компрессор / турбина / альтернативный ротор в сборе (см. изображение выше), не учитывая топливную систему.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина — с частотой около 100000 об/мин.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках