Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Курс лекций Фотоника из

.pdf
Скачиваний:
321
Добавлен:
10.06.2015
Размер:
38.58 Mб
Скачать

241

кие их характеристики как чистоту цвета, надежность функционирования и механическую прочность.

OLED-дисплеи могут быть выполнены на основе пассивной или активной матрицы.

Пассивная матрица дисплея состоит из массива отображающих элементов и пикселей, расположенных на поверхности по строкам и столбцам (рис. 10). В OLED-дисплее каждый пиксель является органическим светодиодом, образованным на пересечении каждой линии строки и столбца. Первые OLED, так же как и первые ЖКИ адресовались как пассивная матрица. Это означает, что для активизации пикселя необходимо приложить напряжение к линиям строки и столбца, на пересечении которых находится нужный пиксель. Чем больший ток протекает через каждый пиксель, тем больше яркость наблюдаемого свечения.

Рис. 10. Пассивная матрица OLED

В дисплее с активной матрицей массив также разделяется на строки и столбцы с пикселями, образуемыми на пересечении линий строк и столбцов. Однако здесь каждый пиксель состоит из органического светодиода (OLED), включенного последовательно с тонкопленочным транзистором (TFT), выполняющим функцию коммутатора, регулирующего уровень тока через OLED (рис. 11).

242

Рис. 11. Активная матрица OLED

В активной матрице OLED-дисплея (AMOLED) информация посылается микротранзистору каждого пикселя, задавая яркость его свечения. TFT-транзистор запоминает эту информацию и плавно регулирует ток через OLED. На рис.12 показан образец таких дисплеев.

Рис. 12. OLED-дисплей Universal Display Corp.

Компания UDC предлагает несколько разновидностей OLED-дисплеев:

TOLED - прозрачные органические светоизлучающие устройства;

FOLED - гибкие органические светоизлучающие устрой-

ства;

SOLED - сложенные органические светоизлучающие устройства.

В дисплеях TOLED используется прозрачная основа, что позволяет создавать дисплеи с излучением только вверх, только вниз или в оба направления. Технология TOLED позволяет получать высококонтрастные изображения, что улучшает читабельность дисплея при ярком солнечном свете. Поскольку

243

TOLED имеет 70% прозрачность в выключенном состоянии, он может быть интегрирован в автостекла в качестве табличек или указателей. Прозрачность дисплеев TOLED дает возможность использовать их с непрозрачными подложками из металла, фольги или кремниевого кристалла, что позволяет создавать дисплеи с отображением только вперед. Простой TOLED дисплей может быть потенциально встроен в будущие динамические кредитные карты. За счет использования поглотителя с низким коэффициентом отражения (черный фон) позади верхней или нижней поверхности TOLED, контрастное отношение может быть значительно улучшено по сравнению с отражающими ЖКИ и OLED. Это особенно важно в приложениях, работающих при дневном свете, например в мобильных телефонах и кабинах авиационной техники.

Встраивая органическую пленку в гибкую поверхность, производители получают исключительные по своим качествам гибкие дисплеи - FOLED (рис. 13). Плоские отображающие панели традиционно выпускаются на стеклянной основе вследствие структурных ограничений и/или ограничений технологического процесса. Гибкие материалы обладают существенными преимуществами в сравнении со стеклянной основой. Впервые дисплеи могут быть выполнены на разнообразных типах подложек: от прозрачных тонких пленок до отражающей металлической фольги. Эти материалы позволяют изгибать и скручивать дисплеи, приспосабливая их к любой поверхности. Это означает, что FOLED-дисплей можно встроить в шлем, в рукав рубашки солдата, в приборную панель самолета или на стекло окна автомобиля. Использование тонких пластиковых подложек также существенно уменьшает вес тонких отображающих панелей в сотовых телефонах, портативных компьютерах и, особенно, в массовой сфере настенного телевидения. Дисплеи FOLED обладают повышенной стойкостью к изломам, устойчивостью к внешним воздействиям и более длительным сроком службы по сравнению с аналогами на стеклянной основе. По заявлениям компании UDC, её партнеры по исследованиям в области технологии производства FOLED разработали эффективный процесс фазового смещения органического пара (OVPD), позволяющий создавать FOLED в технологическом цикле "рулон к рулону".

244

Этот процесс отвечает потребностям массового производства и позволяет выпускать дисплеи на основе OLED наименьшей стоимости по сравнению с большинством плоских отображающих панелей, изготовленных по другим технологиям.

Рис. 13. Гибкие дисплеи FOLED

Дальнейшее развитие OLED-дисплеев привело к появлению т.н. "сложенных OLED" (SOLED). В них использует-ся принципиально новая архитектура организации пикселя, разработанная компанией Universal Display. В дисплеях SOLED пиксель представляет собой вертикальную структуру расположенных друг над другом красного, зеленого и синего подпикселей, что отличается от расположения подпикселей в одной плоскости один возле другого, как в обычных дисплеях на основе ЭЛТ или ЖКИ. Это улучшает разрешающую способность дисплея в три раза и повышает качество цветопередачи. Для раздельной регулировки цвета и яркости каждый красный, зеленый и синий (R- G-B) подпиксельные элементы управляются индивидуально. Задание цвета выполняется за счет регулировки уровня тока в этих трех элементах. Регулировка яркости осуществляется путем изменения общего тока через сток ячейки. Получение градаций серого выполняется за счет широтно-импульсной модуляции сигналов, подаваемых на подпиксели. Технология SOLED компании UDC является первой демонстрацией вертикальноинтегрированной структуры, в которой цвет, яркость и шкала серого могут настраиваться независимо, обеспечивая полно-

245

цветное изображение с высоким разрешением. Важной особенностью SOLED является очень высокий коэффициент заполнения, достигающий 100%. Напри-мер, когда у классического полноцветного дисплея устанавливается зеленый цвет, красный и синий подпиксели отключаются. Напротив, при тех же условиях у структуры SOLED все пиксели станут зелеными. Это означает, что архитектура SOLED обеспечивает лучшую цветопередачу и качество отображения. Еще одной особенностью SOLED является равномерность цветопередачи при увеличении размера пикселя. Это важно для больших дисплеев, в которых пиксели имеют достаточные размеры, чтобы их можно было увидеть с малого расстояния. В традиционных ЭЛТ и ЖКИ дисплеях глаз с близкого расстояния может увидеть раздельные красный, зеленый и синий цвета вместо эквивалентной смеси. У SOLED-дисплеев каждый пиксель излучает желаемый цвет, и поэтому цвет пикселя правильно воспринимается независимо от его размера и расстояния, с которого он наблюдается.

Рис. 14. Самый большой OLEDдисплей от Samsung

Впечатляющие достижения в области создания новейших дисплейных технологий демонстрирует южнокорейская компания Samsung Electronics. В январе 2005 года она объявила о создании самого большого в мире дисплея OLED с диагональю 21 дюйм (рис. 14). Представленная модель имеет малое

246

время отклика, яркость 400 кд/м2, контрастность 5000:1 и поддерживает разрешение WUXGA (1920 x 1200 пикселей). Дисплей с такими характеристиками прекрасно подходит для использования в телевизорах высокой четкости, а поскольку при его изготовлении применялась хорошо отработанная инженерами компании технология аморфного кремния, следует ожидать быстрого выхода этого изделия на массовый рынок по конкурентоспособной цене.

Лекция 12 Копировальный аппарат

- устройство, предназначенное для получения копий с различных оригиналов.

Изобретателем ксерографического процесса считается Честер Ф.Карлсон (1906-1968). В 1947 году фирма Haloid Company перекупила права на использование патентов Карлсона. Тогда же было дано название-ксерография, процессу сухого электростатического переноса изображения, изобретенному Карлсоном. Впоследствии фирма была несколько раз преобра-

зована, и сейчас называется The Document Company Xerox.

Работа копировального аппарата основана на принципе сухой ксерографии (xeros-сухой, graphein-писать). Ксерография - фотографический процесс, основанный на физических явлениях, использующих фотопроводимость полупроводников. Под действием света, такие полупроводники изменяют свое удельное сопротивление.

Фотопроводимость полупроводников.

Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответ-

для примесных полупроводников
λ0 = hc/∆Eп

247

ствующих собственной полосе поглощения полупроводника т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hν ≥ ∆E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 15.10, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок {в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная электронами и дырками.

Если полупроводник содержит примеси, то фотопроводимость может

возникать и при hν < ∆E: для полупроводников с донорной примесью фотон должен обладать энергией hν ≥ ∆ED, а для полупроводников с акцепторной примесью hν ≥ ∆EA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. б) или из валентной зоны на акцепторные уровни в случае полупроводника р-типа (рис. в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для полупроводников р-типа.

Из условия hν = hc/λ можно определить красную границу фотопроводимости — максимальную длину волны, при которой

еще фотопроводимость возбуждается:

 

для собственных полупроводников

 

λ0 = hc/∆E

(

248

)

(

)

(∆Eп - в общем случае энергия активации примесных атомов). Учитывая значения ∆E и ∆Eп для конкретных полупро-

водников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников - на инфракрасную.

Тепловое или электромагнитное возбуждение электронов и дырок может и не сопровождаться увеличением электропроводности. Одним из таких механизмов может быть механизм возникновения экситонов. Экситоны представляют собой квазичастицы — электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны электрически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

Основным элементом копировального аппарата является светочувствительный барабан. Как правило, полый металлический цилиндр, с нанесенным на его поверхность высокоомным полупроводником. В качестве полупроводников выступают слои на основе Se с добавками Te, Cd и др., слои на основе CdS либо органические полупроводниковые покрытия.

Селеновый фоторецептор состоит из нескольких слоев: "ловушечный слой", представляет собой оксидную пленку, служит для предотвращения темновой инжекции носителей заряда. За ним идет фотопроводящий слой, потом алюминиевая оксидная пленка и подложка.

Органический фоторецептор двухслойный. Первый слой - слой, переноса носителей (СПН) электрического заряда, второй слой - слой генерирования носителей (СГН) электрического заряда. За ним идет тонкий слой оксидной пленки, кото-

249

рый предотвращает утекание заряда в подложку, затем подложка - последний алюминиевый слой.

Фоторецепторы в основном бывают двух видов: ленточные и цилиндрические. Ленточные фоторецепторы представляют собой замкнутую широкую ленту с нанесенным на ее поверхность фотопроводящим слоем. Используются в высокопроизводительных аппаратах, так как позволяют спроецировать все изображение оригинала сразу. Цилиндрический фоторецептор - полый металлический цилиндр (обычно алюминиевый), с нанесенным на его поверхность фотопроводящим слоем. Используются в копирах малой и средней производительности.

Работа копировального аппарата состоит из не-

скольких основных этапов. Все этапы взаимосвязаны. Хорошее качество копии зависит от правильного выполнения всех этапов работы копировального аппарата.

Основные этапы работы копировального аппарата.

250

1.Зарядка.

На данном этапе на поверхности фотопроводника барабана формируются равномерно расположенные заряды определенной величины. Зарядка происходит при помощи главного коротрона (коротрона зарядки). На коротрон подается напряжение с высоковольтного блока. Возникает разность потенциалов в несколько киловольт между фоторецептором и коротроном, что приводит к ударной ионизации воздуха (коронный разряд). На поверхности фоторецептора скапливаются заряженные ионы. При вращении фоторецептора его поверхность покрывается равномерным слоем заряда, в результате чего, он подготавливается к экспозиции.

2.Экспонирование.

На этом этапе формируется скрытое электростатическое изображение на барабане. Свет от лампы копирования направляется на документ, отражается от документа и через систему зеркал, объектив, оптическое изображение проецируется на барабан. Свет, отраженный от светлых участков документа имеет высокую интенсивность, а отраженный от темных участков имеет низкую интенсивность. При попадании света на барабан, в слое генерирования носителей заряда, образуются положительные и отрицательные заряды. Положительные заряды, образованные в СГН-слое движутся в направлении отрицательных зарядов на поверхности фотопроводника, отрицательные заряды движутся в направлении положительных зарядов алюминиевого слоя. Таким образом, положительные и отрицательные заряды в алюминиевом слое и на поверхности фотопроводника, взаимно нейтрализуются, соответственно уменьшается потенциал поверхности барабана. Способность СГН-слоя по-

251

252

рождать электрические заряды увеличивается пропорционально

Блок проявки состоит из магнитного вала (постоянный

интенсивности света падающего на барабан. Следовательно, вы-

магнит, окруженный вращающейся втулкой) и ножа, выполнен-

сокая интенсивность света отраженного от светлого участка до-

ного из магнитного материала. Нож регулирует количество то-

кумента, приводит к большему числу электрических зарядов

нера наносимого на барабан и заряжает частицы тонера до нуж-

порожденных СГН-слоем. При этом нейтрализуется большое

ной величины (знак заряда противоположен заряду фоторецеп-

количество отрицательных зарядов на поверхности фотопро-

тора). Перенос тонера с магнитного вала на барабан осуществ-

водника, что приводит к уменьшению потенциала поверхности

ляется с помощью напряжения смещения прикладываемого к

фотопроводника. Низкая интенсивность света от темных участ-

магнитному валу. Напряжение смещения представляет собой

ков документа, приводит к меньшему порождению электриче-

переменное напряжение с постоянной составляющей, которая

ских зарядов в СГН-слое, при этом нейтрализуется меньшее ко-

по знаку соответствует знаку заряда фоторецептора. Во время

личество отрицательных зарядов на поверхности фотопровод-

периода, со знаком, противоположным знаку заряда барабана

ника. Соответственно потенциал поверхности барабана умень-

тонер переносится на фоторецептор, во время другого периода,

шается на меньшую величину. Потенциал поверхности бараба-

тонер с фоновых участков возвращается на магнитный вал. Ве-

на, соответствующий более светлому участку документа, мень-

личина смещения постоянного тока влияет на плотность копии и

ше потенциала, соответствующего более темному участку до-

образование вуали: чем, менее отрицательным является потен-

кумента. Таким образом, формируется скрытое электростатиче-

циал смещения (чем ближе он подходит к 0 в), тем выше оказы-

ское изображение.

вается плотность и вуалеобразование.

3.Проявление.

В двухкомпонентной системе тонер небольшими пор-

На данном этапе частички тонера, попадая на барабан,

циями подается в бункер с носителем (девелопером). Носитель -

проявляют скрытое электростатическое изображение, делая его

магнитный порошок, с диаметром частиц порядка 20-150 мкм,

видимым. В качестве тонера используются многокомпонентные

служит для переноса тонера на барабан. Прилипание тонера к

смеси окрашенных частиц синтетических и натуральных смол.

носителю, происходит за счет трибоэлектрического эффекта

Существуют две системы проявления: однокомпо-

(частицы тонера и носителя, контактируя друг с другом, заря-

нентная и двухкомпонентная.

жаются противоположными зарядами). Тонер равномерно по-

 

крывает носитель. В свою очередь носитель равномерно распре-

 

делен по магнитному валу - полый металлический цилиндр, с

 

расположенными внутри постоянными магнитами. Магнитный

 

вал расположен в непосредственной близости от фоторецептора,

 

таким образом, частицы тонера, заряженные противоположным

 

знаком, чем фоторецептор, притягиваются к его заряженным

 

участкам. Потенциал поверхности фотопроводника на участках

 

соответствующих более темному изображению, является высо-

 

ким (большое количество отрицательных зарядов) и притягивает

В однокомпонентной системе тонер изготавливается из

большее количество частиц тонера. Потенциал поверхности на

смеси частиц магнитного материала, полимера и красителя.

участках соответствующих более светлому изображению, явля-

Слева изображен тонер фирмы OKI (являющийся ее гор-

ется низким (меньше отрицательных зарядов) и притягивает

достью), справа - другого производителя.

меньшее количество частиц тонера. Таким образом, формирует-

 

ся видимое изображение на фоторецепторе, состоящее из части-

253

чек тонера. В процессе проявления носитель не расходуется, но все же требует замены через некоторое время, так как теряет свои магнитные свойства и начинает осыпаться с магнитного вала. В процессе проявления на магнитный вал подается напряжение смещения порядка 100 - 500 вольт, для того чтобы предупредить перенос тонера остаточным зарядом (приблизительно 80 - 100 вольт), характерным для участков, соответствующих светлым участкам изображения.

4. Перенос изображения.

Процесс переноса изображения заключается в переносе частичек тонера, формирующих видимое изображение, расположенных на поверхности фоторецептора на бумагу. Бумага, на которую переносится изображение, заряжается коротроном переноса до уровня более высокого, чем потенциал поверхности фоторецептора. При этом сила притяжения между поверхностью листа и частицами тонера выше, чем сила притяжения между поверхностью барабана и тонером, что вызывает притяжение тонера к бумаге. После переноса все же небольшая часть тонера остается на фоторецепторе, что впоследствии удаляется на стадии очистки барабана.

5.Отделение бумаги.

На этом этапе лист бумаги с нанесенным на него изображением оригинала, отделяется от барабана. В процессе переноса бумага заряжена более сильно, чем фоторецептор, соответственно между ними возникает сила притяжения. Для того чтобы ослабить эту силу, коротрон отделения формирует на поверхности листа заряд переменного тока (для снижения потенциала бумаги до уровня потенциала барабана). В результате этого сила притяжения между барабаном и бумагой ослабевает, и бумага под действием собственного веса отделяется от барабана. Если этого не происходит, то бумага отделяется от барабана механическим способом, отделительными пальцами (зубьями). После этапа отделения бумаги, копия почти готова, но еще требуется закрепление, иначе ее возможно испортить любым механическим воздействием (например, стереть пальцем). Для закрепления копии используется специальное приспособление - фьюзер (печка). Печка состоит из тефлонового вала и резинового вала. Внутри тефлонового вала располагается нагревательная

254

лампа, которая разогревает этот вал, до температуры порядка 200 °С. Лист подается между тефлоновым и резиновым валом и как бы прокатывается между ними. Таким образом, тонер, расположенный на листе бумаги, спекается, и образуется устойчивая к внешним воздействиям копия оригинала. Существуют несколько разновидностей печек. Например, вместо тефлонофого вала используется керамический нагревательный элемент, отделенный от бумаги термопленкой. Такая система имеет меньшее время прогрева, меньшее энергопотребление, но есть свои недостатки: пленку очень легко порвать (повредить), при не аккуратном извлечении застрявший бумаги из аппарата.

6.Очистка барабана.

Оставшийся тонер на поверхности фоторецептора, после процесса переноса изображения, удаляется на данном этапе при помощи лезвия очистки (ракеля). Отработанный тонер скапливается в специальном бункере. По мере накопления отработанного тонера, этот бункер требует очистки.

7.Разрядка.

На данном этапе происходит удаление остаточного потенциала с поверхности барабана. При освещении барабана светом от лампы разрядки, происходит генерирование положительных и отрицательных зарядов в слое генерирования носителей, что приводит к нейтрализации и исчезновению остаточных зарядов на поверхности алюминиевого слоя и поверхности барабана. В итоге потенциал поверхности барабана после этого этапа приближается к нулю. В копировальных аппаратах разных производителей возможны незначительные отличия в реализации процессов ксерографии.

Цифровое копирование

Цифровой копировальный аппарат представляет собой два сопряженных независимых устройства: сканер и лазерный принтер.

Цифровой копир имеет такие же этапы получения копии, как и аналоговый. Но есть и довольно существенные различия между цифровым и аналоговым копированием, поэтому рассмотрим процесс цифрового копирования более детально.

255

1. Экспонирование Ксеноновая лампа освещает оригинал. Свет, отразив-

шийся от оригинала, попадает в CCD (ПЗС), где он преобразуется в данные в форме аналогового сигнала. Эти данные преобразуются в цифровой сигнал, обрабатываются и записываются в память. Во время печати эти данные считываются из памяти и попадают на лазерный диод. При изготовлении нескольких экземпляров одинаковых копий оригинал сканируется один раз и записывается в память.

Приборы с зарядовой связью (ПЗС-матрицы).

История развития

Приборы с зарядовой связью (ПЗС) относятся к классу твердотельных полупроводниковых приемников.

Первыми приемниками такого типа были фотодиоды и уже на заре своего появления они позволили сделать гигантский скачок в области регистрации световых потоков и изображений. Достаточно упомянуть в качестве примера удачную регистрацию с помощью фотодиода явления солнечного затмения, наблюдавшегося берлинскими учеными в Египте в 1911 году.

С тех пор прошло много времени, фотодиоды совершенствовались, но их основной недостаток — одноканальность, все же не позволил им найти широкого применения. С конца 30-х годов среди светоприемников начали появляться телевизионные трубки, завоевавшие к концу 70-х лидирующее положение в этой области.

Было разработано сравнительно много приборов различных типов: ортиконы, изоконы, секоны, видиконы, плюмбиконы (в телевизионном вещании трубки с обратным пучком), кремниконы и суперкремниконы, диссекторы (специализированные трубки с повышенной квантовой эффективностью) и т.д.

256

Все они имели ряд серьезных недостатков: большие размеры, низкую квантовую эффективность (на уровне 5-10%), малый динамический диапазон и т.д.

Революционное изменение ситуации произошло с появлением твердотельных полупроводниковых приемников нового поколения. Квантовая эффективность современных полупроводниковых приемников излучения достигает 95-98%, т.е. практически каждый падающий на прибор фотон регистрируется системой со 100% вероятностью.

В 1970 году были созданы первые приборы с зарядовой связью, в которых технология твердотельных приемников проявилась особенно успешно.

Вначале ПЗС применялись как более эффективные многоканальные заменители фотодиодов, матриц фотодиодов. С наибольшим успехом ПЗС-матрицы регистрировали слабые световые потоки в таких отраслях, как микробиофизика, химическая физика, ядерная физика, астрофизика.

С 1975 года ПЗС начали активно внедряться в качестве телевизионных светоприёмников. А в 1989 году ПЗС-детекторы применялись уже почти в 97% всех телевизионных приемников. Для сравнения, 10 годами ранее ПЗС были представлены всего двумя процентами.

Долгое время широкому применению ПЗС-приемников в телевизионной технике препятствовали недостатки в технологиях изготовления светочувствительных элементов — кристаллических основ необходимого размера. Светоприемная область была неоднородна по квантовому выходу, наблюдалась заметная геометрическая нестабильность (плавающее низкое разрешение), присутствовали разного рода шумы как на малых масштабах (от пиксела к пикселу), так и на больших пространственных масштабах (на шкалах 10-100 пиксел).

257

Фото одной из первых советских ПЗС матриц (размер светочувствительной области 20х2 пиксела)

Только с развитием и совершенствованием технологии создания ПЗС и с существенным скачком в развитии сопутствующих электронных средств и, прежде всего, с увеличением мощностей и быстродействия АЦП, стало возможным более широкое применение ПЗС.

Поставив на конвейер производство изначально дорогих чипов, многие фирмы добились резкого снижения их себестоимости. Удешевление телевизионных камер на основе ПЗС, уменьшение их габаритов и веса, низкое энергопотребление, простота и надежность в эксплуатации позволили применять их не только в профессиональных студиях, в научных исследованиях, в дорогостоящих системах военного назначения. Сегодня телекамеры на основе ПЗС-матриц можно встретить в самых разных областях производства, в различных сферах услуг, сервиса, в системах охраны, в быту. Появление миниатюрных телекамер с применением ПЗС-матриц с размерами пиксела в несколько микрон дали возможность применять их в микрохирургии, микробиологии, микровидеооптике, что привело к созданию специальной микровидеотехники.

Сегодня серийное производство ПЗС-матриц осуществ-

ляется несколькими фирмами: Texas Instruments, Thompson, Loral Fairchild, Ford Aerospace, SONY, Panasonic, Samsung, Philips, Hitachi Kodak. Хотелось бы поставить в один ряд с этими мастодонтами и российскую фирму — Научно-производственное предприятие “Силар” (бывший отдел по разработке твердотель-

258

ных приемников изображения ЦНИИ “Электрон”) из СанктПетербурга, которая является единственным в России производителем ПЗС-матриц, применяемых в научных, охранных и других целях.

Физические принципы работы ПЗС-матрицы

Упрощенно прибор с зарядовой связью можно рассматривать как матрицу близко расположенных МДПконденсаторов. Структуры металл-диэлектрик-полупроводник (МДП-структуры) научились получать в конце 50-х годов. Были найдены и развиты технологии, которые обеспечивали низкую плотность дефектов и примесей в поверхностном слое полупроводника. Тем самым уже через 10 лет были заложены предпосылки для изобретения приборов с зарядовой связью.

С физической точки зрения ПЗС интересны тем, что электрический сигнал в них представлен не током или напряжением, как в большинстве других твердотельных приборах, а зарядом. При соответствующей последовательности тактовых импульсов напряжения на электродах МДП-конденсаторов зарядовые пакеты можно переносить между соседними элементами прибора. Поэтому такие приборы и названы приборами с переносом заряда или с зарядовой связью.

На рис. 1 показана структура одного элемента, линейного трехфазного ПЗС в режиме накопления. Структура состоит из слоя кремния р-типа (подложка), изолирующего слоя двуокиси кремния и набора пластин-электродов. Один из электродов смещен более положительно, чем остальные два, и именно под ним происходит накопление заряда. Полупроводник р-типа, получают добавлением (легирование) к кристаллу кремния акцепторных примесей, например, атомов бора. Акцепторная примесь создает в кристалле полупроводника свободные положительно заряженные носители — дырки. Дырки в полупроводнике р- типа являются основными носителями заряда: свободных электронов там очень мало. Если теперь подать небольшой положительный потенциал на один из электродов ячейки трехфазного ПЗС, а два других электрода оставить под нулевым потенциалом относительно подложки, то под положительно смещенным электродом образуется область обедненная основными носителями — дырками. Они будут оттеснены вглубь кристалла. На

259

языке энергетических диаграмм это означает, что под электродом формируется потенциальная яма.

Рис. 1. Элемент трехфазного П3С. Пиксел - элемент изображения.

В основе работы ПЗС лежит явление внутреннего фотоэффекта. Когда, в кремнии поглощается фотон, то генерируется пара носителей заряда — электрон и дырка. Электростатическое поле в области пиксела “растаскивает” эту пару, вытесняя дырку в глубь кремния. Неосновные носители заряда, электроны, будут накапливаться в потенциальной яме под электродом, к которому подведен положительный потенциал. Здесь они могут храниться достаточно длительное время, поскольку дырок в обедненной области нет и электроны не рекомбинируют. Носители, сгенерированные за пределами обедненной области, медленно движутся — диффундируют и, обычно, рекомбинируют с решеткой прежде, чем попадут под действие градиента поля обедненной области. Носители, сгенерированные вблизи обедненной области, могут диффундировать в стороны и могут попасть под соседний электрод. В красном и инфракрасном диапазонах длин волн ПЗС имеют разрешение хуже, чем в видимом диапазоне, так как красные фотоны проникают глубже в кристалл кремния и зарядовый пакет размывается.

Заряд, накопленный под одним электродом, в любой момент может быть перенесен под соседний электрод, если его потенциал будет увеличен, в то время как потенциал первого электрода, будет уменьшен (см. рис. 2). Перенос в трехфазном ПЗС можно выполнить в одном из двух направлений (влево или вправо, по рисункам). Все зарядовые пакеты линейки пикселов будут переноситься в ту же сторону одновременно. Двумерный массив (матрицу) пикселов получают с помощью стоп-каналов,

260

разделяющих электродную структуру ПЗС на столбцы. Стоп каналы — это узкие области, формируемые специальными технологическими приемами в приповерхностной области, которые препятствуют растеканию заряда под соседние столбцы.

Рис. 2.

Перенос зарядов в трехфазном ПЗС. Типы и строение ПЗС-матриц для систем охранного телевидения

Большинство типов ПЗС-матриц, изготавливаемых на промышленной основе, ориентированы на применение в телевидении, и это находит отражение на их внутренней структуре.

Как правило, такие матрицы состоят из двух идентичных областей — области накопления и области хранения. Устройство схематически показано на рис. 3.