Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Курс лекций Фотоника из

.pdf
Скачиваний:
309
Добавлен:
10.06.2015
Размер:
38.58 Mб
Скачать

261

Рис. 3. Структура ПЗС с кадровым переносом.

По отношению размеров областей хранения и накопления матрицы делятся на 2 типа:

матрицы с кадровым переносом для прогрессивной раз-

вертки;

матрицы с кадровым переносом для черезстрочной раз-

вертки.

Существуют также матрицы, в которых отсутствует секция хранения, и тогда строчный перенос осуществляется прямо по секции накопления. Очевидно, что для работы таких матриц требуется оптический затвор.

Область хранения защищена от воздействия света светонепроницаемым покрытием. Во время обратного хода луча кадровой развертки телевизионного монитора изображение, сформированное в области накопления, быстро переносится в область хранения и, затем, пока экспонируется следующий кадр, считывается построчно с частотой строчной развертки в выход-

262

ной сдвиговый регистр. Параллельный перенос строки в регистр считывания происходит во время обратного хода строчной развертки. Из сдвигового регистра зарядовые пакеты выводятся друг за другом, последовательно через выходной усилитель, расположенный на этом же кристалле кремния. В этом узле происходит преобразование заряда в напряжение для дальнейшей обработки сигнала внешней электронной аппаратурой. Такие приборы называются ПЗС с кадровым переносом. Они широко используются в бытовой видеотехнике, особенно любительской, благодаря их низким ценам. Приборы с кадровым переносом можно использовать для съемок в хорошо освещенных условиях. Применение подобных ПЗС позволяет использовать видеокамеры без дорогостоящих механических затворов.

ПЗС, сконструированные для применения в условиях слабой освещенности, как правило, изготавливаются без области хранения и часто имеют два сдвиговых регистра на противоположных сторонах прибора, как, например, ПЗС фирмы Tektronix ТК512. Изображение можно сдвинуть в любой из этих регистров, которые могут отличаться конструкцией выходного узла. Обычно, один из них оптимизируется для медленных скоростей считывания, другой для быстрых. На время вывода сигнала такая матрица должна быть экранирована от света. Для этого чаще всего используют механические затворы.

ПЗС с черезстрочной (межстрочной) разверткой хорошего качества современной разработки выпускает, например, фирма Philips. Такими матрицами снабжены телекамеры серии LTC 03, LTC 04. Так телекамера LTC 0350 снабжена автоматическим электронным затвором 1/50 — 1/100000 сек, работающим с форматом матрицы 1/3 дюйма и размером 752х582 пиксел.

Самые простые по устройству ПЗС состоят из электродной структуры, осажденной прямо на слой изолятора, сформированного на поверхности пластины однородно легированного р-кремния. Заряд накапливается и переносится непосредственно в приповерхностном слое полупроводника. Такие приборы называются ПЗС с поверхностным каналом. Для поверхностного слоя характерно большое количество дефектов, что негативно влияет на эффективность переноса зарядов. Заряды захватываются на дефектах поверхностного слоя и медленно высвобож-

263

даются. Это приводит к размазыванию изображения. Дефекты поверхностного слоя могут также спонтанно эмитировать заряды, приводя к увеличению темнового сигнала (тока). Поверхностные состояния являются фактором, ограничивающим работоспособность ПЗС. Полностью избавиться от поверхностных состояний невозможно, но можно значительно улучшить характеристики прибора, храня и передавая зарядовые пакеты на некотором удалении от поверхности кристалла, т.е. сформировав объемный канал переноса. Этого результата можно достичь, если на подложке р-типа создать под окислом тонкий n-слой. Подобные приборы называются ПЗС с объемным каналом. Аналогичные рассуждения справедливы и относительно конструкции выходного усилителя, т.к. поверхностные дефекты могут очень сильно увеличивать шум усилителя. Выходной усилитель с объемным каналом имеет значительно лучшие характеристики.

Толщина рабочей части приборов с зарядовой связью составляет единицы микрон. Изготавливаются они, как правило, на основе очень тонких полупроводниковых плёнок, выращенных на сравнительно толстом основании — подложке. Для выращивания плёнок на подложках разработано несколько методов, носящих общее название эпитаксиальных. Термин “эпитаксия” составлен из двух греческих слов: “эпи” (на, поверх) и “таксис” (расположение в порядке). Очень удачный термин, напоминающий о том, что речь идет о выращивании поверх подложки монокристаллического (упорядоченного) слоя материала. Выращенные эпитаксиальные пленки гораздо меньше загрязняются посторонними примесями. В процессе эпитаксии возможно строго контролируемое легирование растущего слоя.

Электроды ПЗС-матриц

Электроды ПЗС в течение некоторого времени после изобретения чаще всего изготавливались в одном слое металла. Слой алюминия толщиной около 1 мкм наносили на прибор испарением. Затем путем фотолитографии формировали электроды. Наиболее критичным этапом в технологическом цикле изготовления одноуровневой структуры этого типа является вытравливание межэлектродных зазоров. Для обеспечения хорошего переноса зарядовых пакетов надо, чтобы потенциальные ямы соседних электродов перекрывались. Глубина потенциальной

264

ямы зависит от степени легирования кремния и величины приложенного к электроду потенциала. Типичные значения — единицы микрон. Отсюда следует, что межэлектродные зазоры не должны быть больше единиц микрон. Суммарная длина этих узких зазоров в больших приборах весьма велика.

Для слаболегированного материала подложки (концентрация атомов акцептора около 1015 1/см3, толщина окисла 0.1 мкм и умеренный размах тактовых импульсов порядка 10 В) обедненный слой проникает в кремний на глубину примерно 1 мкм. Вспомним, что в каждом кубическом сантиметре твердого вещества содержится примерно 1022 атомов. Концентрация 1015атомов примеси в 1 см3 соответствует 1 атому примеси на 10 миллионов атомов Si.

Понятно, что любое случайное замыкание соседних электродов, произошедшее на одной из операций технологического цикла, полностью выведет прибор из строя. Последующее развитие ПЗС-технологии было направлено на создание структур, свободных от недостатков первых технологий и работающих с более простыми управляющими напряжениями.

П3С для применения в качестве приемников изображения изготавливают с поликремниевыми электродами (кремний, осаждаемый из газовой фазы). После легирования бором или фосфором для достижения достаточно низкого сопротивления его можно использовать в качестве проводящего слоя. Термическое же окисление поликремния позволяет получить качественный межфазный диэлектрик, а его прозрачность облегчает использование ПЗС в качестве приемников изображения. Применение этой технологии позволило осуществлять регистрацию света не со стороны электродов (такой тип регистрации имеет много недостатков, так как полезный световой сигнал частично виньетируется электродами), а с противоположной стороны. Такие матрицы называются back illuminated.

Благодаря применению новейших высокоточных технологий в изготовлении ПЗС, эти приемники излучения в настоящее время стали доминирующими в телевизионных системах и вывели их на принципиально новый уровень, существенно расширив функциональные возможности ПЗС и сделав доступными по себестоимости для широкого применения.

265

2. Заряд фотобарабана

В темноте устройство заряда (вал заряда) переносит на органический фотопроводящий (OPC) барабан электростатический заряд. Заряд остается на поверхности барабана, так как слой OPC имеет большое электрическое сопротивление в темноте.

3. Экспонирование лазером

Обработанные данные, сосканированные с оригинала, считываются из памяти и переносятся на барабан с помощью лазерного луча, который формирует электростатический скрытый образ на поверхности барабана. Величина заряда, оставшегося в качестве скрытого образа на барабане, зависит от интенсивности лазерного луча.

Примечание. Для повышения долговечности лазера стали засвечивать не белые участки копии, как в аналоговом аппарате, а точки, где есть информация - т.е. черные участки.

4. Проявка

Магнитная щетка проявителя (девелопера) на валу блока проявки входит в контакт со скрытым изображением на поверхности барабана. Частицы тонера под воздействием электростатических сил переходят на участки поверхности барабана, заряд которых уменьшился (по абсолютной величине) под воздействием лазерного луча.

266

Примечание. Здесь стоит выделить, пожалуй, основное отличие цифрового копирования от аналогового, заключающееся в том, что заряд барабана и заряд тонера имеют одинаковый знак, поэтому тонер прилипает к разряженным лазером участкам барабана, тогда как в аналоговом тонер прилипает к заряженным участкам.

5. Перенос изображения

Бумага для копирования подается между поверхностью барабана и узлом переноса (вала переноса) в момент времени, обеспечивающий совмещение бумаги и проявляемого изображения на поверхности барабана. Затем устройство переноса передает сильный заряд, противоположный по знаку тонеру, на обратную сторону бумаги для копирования. Этот заряд притягивает частицы тонера с поверхности барабана на бумагу.

6. Отделение бумаги

Бумага отделяется от барабана в результате электростатического притяжения между бумагой и устройством переноса. Для лучшего отделения бумаги от барабана предназначено устройство отделения, на которое также подается напряжение, и которое еще больше отделяет бумагу от барабана и одновременно нейтрализует заряд, возникающий на бумаге.

7. Очистка

Чистящее лезвие удаляет тонер, оставшийся на поверхности барабана после переноса изображения на бумагу.

8. Гашение (нейтрализация) заряда

Свет от лампы подавления (гашения) заряда электрически нейтрализует заряд, оставшийся на поверхности барабана.

9. Закрепление

На этапе закрепления бумага проходит между нагревательным и прижимным валиками фьюзера (печки). При этом под воздействием температуры и давления частички тонера расплавляются и впрессовываются в бумагу, создавая устойчивое к внешним воздействиям изображение.

Некоторые положительные моменты в сравнении с аналоговыми копирами

Весь тракт прохождения листа, на котором будет отпечатана копия, в цифровом аппарате выполнен вертикально, то-

267

гда как в аналоговом - горизонтально, что позволило сократить протяженность этого тракта и уменьшить габариты аппарата.

Цифровой образ оригинала позволяет выполнять все преобразования с ним программным способом; поэтому набор этих преобразований значительно расширился по сравнению с аналоговыми аппаратами.

Наконец, немаловажным качеством цифрового аппарата является то, что он, будучи оснащенным дополнительными модулями, может выполнять роль не только копировального аппарата, но и принтера, и сканера, и даже факса.

Принцип работы лазерного принтера.

Впервые лазерный принтер был представлен фирмой Hewlett Packard. (поправка: впервые лазерный принтер был предоставлен не Hewlett-Packard, а компанией XEROX в 1977 году) В нем был использован электрографический принцип создания изображений — такой же, как в копировальных аппаратах. Различие состояло в способе экспонирования: в копировальных аппаратах оно происходит с помощью лампы, а в лазерных принтерах свет лампы заменил луч лазера (рис. 1).

Сердцем лазерного принтера является фотопроводящий цилиндр (Organic Photo Conductor), который часто называют пе-

268

чатающим фотобарабаном или просто барабаном. С его помощью производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой фоточувствительного полупроводника. Поверхность такого цилиндра можно снабдить положительным или отрицательным зарядом, который сохраняется до тех пор, пока барабан не освещен. Если какую-либо часть барабана экспонировать, покрытие приобретает проводимость и заряд стекает с освещенного участка, образуя незаряженную зону. Это ключевой момент в понимании принципа работы лазерного принтера.

Другой важнейшей частью принтера является лазер и оптико-механическая система зеркал и линз, перемещающая луч лазера по поверхности барабана. Малогабаритный лазер генерирует очень тонкий световой луч. Отражаясь от вращающихся зеркал (обычно четырехгранной или шестигранной формы), этот луч засвечивает поверхность фотобарабана, снимая ее заряд в точке экспонирования.

Для получения точечного изображения лазер включается и выключается при помощи управляющего микроконтроллера. Вращающееся зеркало разворачивает луч в виде строки скрытого изображения на поверхности фотобарабана.

После формирования строки специальный шаговый двигатель поворачивает барабан для формирования следующей. Это смещение соответствует разрешающей способности принтера по

269

вертикали и обычно составляет 1/600 или 1/1200 дюйма. Процесс образования скрытого изображения на барабане напоминает формирование растра на экране телевизионного монитора.

Используются два основных способа предварительного (первичного) заряда поверхности фотоцилиндра:

-при помощи тонкой проволоки или сетки, называемой “коронирующим проводом”. Высокое напряжение, подаваемое на провод, приводит к возникновению светящейся ионизированной области вокруг него, которая называется короной, и придает барабану необходимый статический заряд;

-при помощи предварительно заряженного резинового вала (PCR).

Итак, на барабане сформировано невидимое изображение в виде статически разряженных точек.

Устройство картриджа

Перед тем как рассказать о процессе передачи и закрепления изображения на бумаге, рассмотрим устройство картри-

джа для принтера Laser Jet 1100 фирмы Hewlett Packard. В этом типичном картридже можно выделить два основных отделения: отделение для отработанного тонера и тонерный отсек.

Основные конструктивные элементы отделения для отработанного тонера (рис. 2):

270

1 — Фотобарабан (Organic Photo Conductor (OPC) Drum).

Представляет собой алюминиевый цилиндр, покрытый органическим светочувствительным и фотопроводящим материалом (обычно оксидом цинка), который способен сохранять образ, наносимый лазерным лучом.

2 — Вал первичного заряда (Primary Charge Roller (PCR)). Обеспечивает равномерный отрицательный заряд барабана. Выполнен из токопроводящей резиновой или поролоновой основы, нанесенной на металлический вал.

3— “Вайпер”, ракель, чистящее лезвие (Wiper Blade, Cleaning Blade). Очищает барабан от остатков тонера, который не был перенесен на бумагу. Конструктивно выполнен в виде металлического каркаса (stamping) с полиуретановой пластиной

(blade) на конце.

4— Лезвие очистки (Recovery Blade). Перекрывает область между барабаном и бункером для отработанного тонера. Recovery Blade пропускает тонер, оставшийся на барабане, внутрь бункера и не дает ему высыпаться в обратном направлении (из бункера на бумагу).

Основные конструктивные элементы тонерного от-

сека (см. рис. 3):

1 — Магнитный вал (Magnetic Developer Roller, Mag Roller, Developer Roller). Представляет собой металлическую трубку, внутри которой находится неподвижный магнитный сердечник. К магнитному валу притягивается тонер, который, перед подачей на барабан, приобретает отрицательный заряд под действием постоянного или переменного напряжения.

2— “Доктор” (Doctor Blade, Metering Blade). Обеспечи-

вает равномерное распределение тонкого слоя тонера на магнитном вале. Конструктивно выполнен в виде металлического каркаса (stamping) с гибкой пластиной (blade) на конце.

3— Уплотнительное лезвие магнитного вала (Mag Roller Sealing Blade). Тонкая пластина, аналогичная по функциям Recovery Blade. Перекрывает область между магнитным валом и отсеком подачи тонера. Mag Roller Sealing Blade пропускает тонер, оставшийся на магнитном вале, внутрь отсека, предотвращая утечку тонера в обратном направлении.

271

272

4 — Бункер для тонера (Toner Reservoir). Внутри него

движение компонентов картриджа останавливаются — принтер

находится “рабочий” тонер, который будет перенесен на бумагу

переходит в состояние готовности к печати (Ready).

в процессе печати. Кроме того, в бункер встроен активатор то-

После отправки документа на печать, в картридже ла-

нера (Toner Agitator Bar) -проволочная рамка, предназначенная

зерного принтера происходят следующие процессы:

для перемешивания тонера.

Зарядка барабана (рис. 5). Вал первичного заряда (PCR)

5 — Пломба, чека (Seal). В новом (или регенерирован-

равномерно передает на поверхность вращающегося барабана

ном) картридже тонерный бункер запечатан специальной плом-

отрицательный заряд.

бой, которая предотвращает просыпание тонера при транспор-

Экспонирование (рис. 6). Отрицательно заряженная по-

тировке картриджа. Перед началом эксплуатации эта пломба

верхность барабана экспонируется лазерным лучом только в тех

удаляется.

местах, на которые будет нанесен тонер. Под действием света,

 

фоточувствительная поверхность барабана частично теряет от-

 

рицательный заряд. Таким образом, лазер экспонирует на бара-

 

бан скрытое изображение в виде точек с ослабленным отрица-

 

тельным зарядом.

 

Нанесение тонера (рис. 7). На этом этапе скрытое изоб-

Принцип лазерной печати

ражение на барабане при помощи тонера превращается в види-

мое изображение, которое будет перенесено на бумагу. Тонер,

На рис. 4 изображен картридж в разрезе. Когда включа-

находящийся около магнитного вала, притягивается к его по-

ется принтер, все компоненты картриджа приходят в движение:

верхности под действием поля постоянного магнита, из которо-

происходит подготовка картриджа к печати. Этот процесс ана-

го изготовлена сердцевина вала. При вращении магнитного вала

логичен процессу печати, но лазерный луч не включается. Затем

тонер проходит сквозь узкую щель, образованную “доктором” и

 

валом. В результате он приобретает отрицательный заряд и при-

273

липает к тем участкам барабана, которые были экспонированы. “Доктор” обеспечивает равномерность нанесения тонера на магнитный вал.

Перенос тонера на бумагу (рис. 8). Продолжая вра-

щаться, барабан с проявленным изображением соприкасается с бумагой. С обратной стороны бумага прижимается к валу Transfer Roller, несущему положительный заряд. В результате отрицательно заряженные частицы тонера притягиваются к бумаге, на которой получается изображение, “насыпанное” тонером.

Закрепление изображения (рис. 9]. Лист бумаги с неза-

крепленным изображением перемещается к механизму закрепления, представляющим собой два соприкасающихся вала, между которыми протягивается бумага. Нижний вал (Lower Pressure Roller) прижимает ее к верхнему валу (Upper Fuser Roller).

Верхний вал нагрет, и при соприкосновении с ним частицы тонера расплавляются и закрепляются на бумаге.

Очистка барабана (рис. 10). Некоторое количество тонера не переносится на бумагу и остается на барабане, поэтому его необходимо очистить. Эту функцию выполняет “вайпер”. Весь тонер, оставшийся на барабане, счищается вайпером в бункер для отработанного тонера. При этом Recovery Blade закрывает область между барабаном и бункером, не позволяя тонеру просыпаться на бумагу.

“Стирание” изображения (рис. 11). На этом этапе с поверхности барабана “стирается” скрытое изображение, нанесенное лазерным лучом. При помощи вала первичного заряда поверхность фотобарабана равномерно “покрывается” отрицательным зарядом, который восстанавливается в тех местах, где он был частично снят под действием света.

274

Лекция 13 Цифровые проекторы DLP-технологии

В основе DLP-технологии лежит специальная микросхема, или цифровой микрозеркальный прибор - DMD (Digital Micromirror Device). Верхняя поверхность микросхемы - прозрачное стекло, под которым расположен зеркальный рабочий слой (рис. 1).

Современный чип состоит примерно из миллиона микрозеркал размером 14x14 мкм каждое, зазор между зеркалами - 1 мкм (рис. 2).

Каждое зеркало может находиться только в двух положениях: включено и выключено (соответственно +120 и -120 к вертикали). Принцип работы простой: один пиксел изображения соответствует одному микрозеркалу. Чем больше разрешение изображения, тем больше необходимо микрозеркал и тем больше размер микросхемы. В положении «включено» отраженный от микрозеркала свет попадает в объектив, в положении «выключено» - в ловушку (рис. 3).

275

Такая технология называется Digital Light Processing (DLP) - цифровая обработка света, потому что зеркало, как и любой цифровой сигнал, имеет только два состояния: «0» и «1».

Прежде чем перейти к устройству проекторов, вспомним основы физиологии зрения. Известно, что за зрение отвечают не только глаза - это совместная работа глаз и головного мозга. Зрение человека инерционно, время инерции примерно 1/25 с, на этом явлении построен современный кинематограф. Кроме инерционности, человеческое зрение обладает способностью суммирования по цветам и по времени, или интегральными свойствами. Интегрирование по цвету заключается в том, что три разных цвета (Red (красный), Green (зеленый) и Blue (синий) - RGB), показанных одновременно, человек воспринимает как один смешанный. Любой оттенок можно воспроизвести, комбинируя эти три основных цвета. Интегрирование по времени заключается в том, что одна и та же точка на экране, светящаяся в течение 1 мс, будет казаться ярче в 10 раз, чем точка, светящаяся в течение 0,1 мс. В DLP-проекторах используются обе интегральные способности зрения человека: на экран последовательно выводят основные цвета (RGB) в течение разного времени, передавая изображение желаемого цвета и яркости.

Чем дольше микрозеркало находится в положении «включено», тем ярче человеку кажется этот пиксел. При этом

276

понятно, что реальная яркость точки на экране неизменна, меняется только продолжительность ее свечения. Живое существо, с другой физиологией зрения, увидит просто набор коротких вспышек чистых цветов (красный, зеленый, синий), причем все вспышки одного цвета будут иметь одинаковую яркость.

Принцип работы трехчиповых DLP-проекторов достаточно физиологичен и похож на принцип работы трехпанельных LCD-проекторов (рис. 4), поэтому мы его рассматривать не будем.

Остановимся подробнее на принципе работы одночиповых DLP-проекторов (рис. 5). С целью воспроизведения цветной картинки такие проекторы передают на экран в течение очень короткого времени последовательно красное (R), зеленое (G) и синее (B) изображения. Интегрированное цветное изображение, еще раз подчеркиваю, воссоздается только в голове человека, но не на экране. Если у вас есть DLP-проектор и современная цифровая камера с маленькой выдержкой, то вы это можете сами проверить. Выведите белый фон на экран и сделайте несколько снимков подряд с минимальной выдержкой, практически все ваши кадры будут окрашены в основные цвета.

277

Последовательная передача цветов происходит с помощью цветного колеса, состоящего из трех цветных секторовфильтров (рис. 6). Колесо первых проекторов вращалось с частотой 60 оборотов в секунду, или 3600 оборотов в минуту. Выбор такой частоты вращения очевиден для США, страны, в которой частота переменного тока 60 Гц и стандарт видео/телевидения NTSC подразумевает 30 кадров в секунду или 60 полукадров. Проекторы с такими колесами в специальной литературе обозначаются как проекторы с однократной скоростью (1х).

Практически все современные проекторы имеют колесо с удвоенной частотой вращения (2х), т. е. 7200 оборотов в минуту. Появление проекторов с реальной тройной частотой вращения - 10800 оборотов в минуту - маловероятно из-за того, что технически сложно изготовить цветное колесо требуемой прочности и малошумные подшипники, работающие длительное

278

время на таких частотах. Однако выпускаются проекторы со скоростью 4х. Реально эти проекторы имеют колесо с удвоенной частотой вращения, но не с тремя цветными секторами, а с шестью. Для чего все это делается? Для уменьшения времени формирования цветной точки, которое на проекторах 1х и 2х происходит за один оборот колеса - соответственно за 17 и 8 мс, а для проекторов 4х - за пол-оборота, т. е. за 4 мс (рис. 7).

С какой целью создатели стремятся сократить время формирования цветной точки? Для уменьшения эффекта «радуги», который заключается в том, что человек видит вместо однотонного цвета различные цветные вспышки. В первую очередь это относится к людям молодым, у которых хорошее быстродействие зрения. Часто такие вспышки можно заметить, если быстро переводить взгляд с одного участка изображения на другое, например по диагонали, или просто быстро махать перед глазами ладонью с раздвинутыми пальцами. Причина эффекта - в последовательном формировании цвета. Предположим, у нас есть изображение с белым фоном, например электронная таблица или текстовый файл, а на колесе секторы находятся в таком порядке: красный - зеленый - синий. Если мы посмотрим на левый нижний угол и в момент прохождения зеленого сегмента переведем взгляд на правый верхний угол и обратно, то нам может показаться, что первый угол не белый, а цветной с нехваткой синего, и второй угол тоже цветной с нехваткой зеленого. Когда мы машем ладонью перед глазами, то в момент прохождения одного из цветных секторов пальцы закрывают от нас на короткое время фрагмент изображения, вырезая одну из цветовых составляющих.

279

DLP-технология одна, а DLP-устройств много. Условно всю DLP-технику можно разделить на проекто-

ры (классы 1 - 3) и специализированные устройства (классы 4 - 5).

1-й класс - одночиповые ультрапортативные или портативные DLP-проекторы для широкого потребления, рассчитанные прежде всего на показ компьютерных презентаций в офисных помещениях при искусственном освещении.

2-й класс - одночиповые проекторы, специально разработанные для домашнего кинотеатра. Как правило, это громоздкие, с низким световым потоком, дорогие устройства. Их массовое производство налажено около двух лет назад.

3-й класс - это трехчиповые, очень дорогие проекторы для больших залов и цифрового кинематографа. Такие проекторы пока еще нельзя увидеть в демозалах нашей страны, скорее всего они появятся у нас только через несколько лет, когда подешевеют хотя бы до уровня 20 тыс. долл.

4-й класс - модули для видеокубов и проекционных телевизоров.

5-й класс - специальные устройства на основе DLPтехнологии (оптические коммутаторы, полиграфические машины и т. д.).

Знать класс устройства очень важно, так как многие недостатки и достоинства технологии относятся не ко всем DLPпроекторам, а лишь к отдельным классам. Далее в статье под DLP-проекторами имеются в виду только аппараты 1-го класса, если специально не оговорено иное.

LCD-технология

В мультимедийных проекторах, выполненных по техно-

логии LCD (Liquid Crystal Display), функции формирователя изображения выполняет LCD-матрица просветного типа. По принципу действия такие аппараты напоминают обычные диапроекторы (см. Устройство LCD-проектора) с той разницей, что проецируемое на внешний экран изображение формируется при прохождении излучаемого лампой светового потока не через слайд, а через жидкокристаллическую панель, состоящую из множества электрически управляемых элементов - пикселов. В зависимости от величины приложенного к каждому такому эле-

280

менту переменного напряжения меняется его прозрачность, а, следовательно, и уровень освещенности участка экрана, на который проецируется данный пиксел.

LCD-технология позволила существенно удешевить проекционные аппараты, уменьшить их габариты и одновременно увеличить излучаемый ими световой поток (в наиболее мощных моделях он достигает и 10000 ANSI-лм). Она естественным образом адаптирована к воспроизведению видеосигналов от компьютерных источников, а также сохраненных в цифровом формате видеофайлов. LCD-проекторы просты в обращении и настройке и сохраняют свои параметры после транспортировки. Именно поэтому они широко применяются в бизнес-сфере для проведения презентаций и демонстрации шоу-программ.

Вместе с тем, из-за ограниченности собственного оптического разрешения, определяемого числом пикселов в жидкокристаллической матрице формирователя изображения, LCDпроекторы воспроизводят без искажения сигналы только одного, как правило, компьютерного стандарта SVGA, XGA и т. д. Для воспроизведения сигналов иных стандартов, в том числе телевизионных, применяются специальные алгоритмы преобразования графической информации к естественному для данного проектора цифровому формату. Наличие непрозрачных промежутков между отдельными пикселами в жидкокристаллических матрицах приводит к появлению на экране сетки, различимой с близкого расстояния. С переходом на полисиликоновые матрицы с более плотной структурой пикселов и разрешением XGA и выше этот недостаток становится практически незаметным, а постоянное совершенствование алгоритмов формирования цветного изображения значительно улучшает его качество по сравнению с моделями более ранней разработки.

LCD-матрица