Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика твердого тела (тексты лекций).doc
Скачиваний:
286
Добавлен:
07.06.2015
Размер:
1.53 Mб
Скачать

8.1.3 Электронная теплоемкость

Рассмотрим простейший случай. Из классических представлений электронный газ можно рассматривать как идеальный газ. К последнему применим закон равномерного распределения энергии по степеням свободы. То есть на каждый электрон приходиться энергии. Тогда, исходя из классических представлений, мы будем иметь суммарную теплоемкость

.

Полученное выражение не соответствует экспериментальным данным как для металлов, у которых высокая концентрация внешних электронов, так и для диэлектриков, для которых она стремится к нулю. В области высоких температур для всех твердых тел эксперимент дает примерно одинаковую теплоемкость, приблизительно равную 3R. То есть наше предположение о применимости к электронному газу классических представлений (в частности, закона равномерного распределения энергии по степеням свободы) является неправомерным.

Дело в том, что при определении электронной теплоемкости необходимо учитывать квантово-механический характер поведения электронов в решетке. Поэтому для нахождения вклада электрона в суммарную теплоемкость необходимо учитывать не все электроны данного кристалла, а лишь те, которые лежат в полосе шириной kT вблизи уровня Ферми. С учетом таких электронов электронная теплоемкость может быть представлена в виде . Тогда суммарная теплоемкость при низких температурах может быть представлена в виде:

,

где а и b - постоянные множители.

Таким образом, вблизи абсолютного нуля теплоемкость, связанная с колебаниями решетки, падает пропорционально Т3, а теплоемкость, обусловленная электронным газом, изменяется линейно. Поэтому вклад теплоемкости электронов при значительном понижении температуры становится определяющим.

8.2 Теплопроводность

8.2.1 Понятие о коэффициенте теплопроводности

Все твердые тела способны проводить тепло. Необходимым условием распространения тепла является наличие температурного градиента. Опыт показывает, что передача тепла по механизму теплопроводности происходит по нормали к изотермической поверхности от мест с большей температурой к местам с меньшей температурой.

Количество тепла, проходящее в единицу времени и отнесенное к единице площади изотермической поверхности, называется плотностью теплового потока. Соответствующий вектор называется вектором теплового потока, направление которого противоположно температурному градиенту (оба вектора направлены по нормали к изотермической поверхности, но в противоположные стороны).

В изотропном твердом теле согласно закону Фурье плотность теплового потока пропорциональна градиенту температуры и связана с ним через коэффициент пропорциональности:

.

Знак «минус» указывает на противоположную направленность векторов теплового потока и градиента температур. Коэффициент пропорциональности называется коэффициентом теплопроводности и равен количеству тепла, протекающего в единицу времени через единицу поверхности при перепаде температуры на единицу длины нормали, равном одному градусу. Отсюда следует, что коэффициент теплопроводности в СИ имеет размерность Вт/(мК).

Для анизотропных тел в общем случае не совпадает с направлением нормали к изотермической поверхности, и закон Фурье в этом случае приобретает следующий вид:

,

где коэффициенты образуют симметричный тензор второго ранга:

.

Коэффициент теплопроводности всех известных веществ является функцией большого числа параметров: температуры, структуры или состояния вещества, внешних воздействий и т.д. Поэтому точное определение коэффициента теплопроводности расчетным путем установить очень сложно, и в подавляющем большинстве случаев эти значения определяются экспериментально.