Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика твердого тела (тексты лекций).doc
Скачиваний:
286
Добавлен:
07.06.2015
Размер:
1.53 Mб
Скачать
    1. Кристаллы с водородными связями

В особый класс по типу связи выделяются кристаллы с водородными связями, хотя водородная связь является одним из видов межмолекулярного взаимодействия. В отличие от атомных кристаллов, у которых силы взаимодействия обусловлены обобществлением электронов, силы связи для кристаллов с водородными связями обусловлены обобществлением протонов.

Водородная связь между двумя молекулами осуществляется водородным атомом, который, будучи химически связан с одной молекулой, одновременно взаимодействует с атомом кислорода другой молекулы. Такая связь может быть как одинарной, так и двойной.

Полагают, что водородная связь может осуществляться с атомами фтора, натрия, хлора и серы.

Соединения с водородной связью обладают тенденцией к полимеризации. Водородная связь является важнейшей формой взаимодействия между молекулами воды, она является одной из причин, побуждающих молекулы ассоциировать в группы из двух, четырех или восьми молекул, что обуславливает аномальные физические свойства воды и льда.

4.6 Сопоставление различных типов связей

Классификация кристаллов по типам связи весьма условна. Многие тела трудно отнести к тому или иному классу кристаллов по типу связи. Но, тем не менее, приближенная классификация кристаллов по типам связи полезна, потому что знание преобладающего типа связи позволяет оценить энергию связи кристалла.

Под энергией связи понимается энергия, необходимая для разъединения твердого тела на отдельные атомы, молекулы или ионы (в зависимости от типа кристалла: ковалентные и металлические кристаллы нужно разделить на атомы, ионные - на ионы, молекулярные и кристаллы с водородными связями - на молекулы).

В таблице 4.1 приводится классификация кристаллов по типам связей с указанием энергии связи.

Вандерваальсова связь является наиболее универсальной, она возникает между любыми частицами, но это наиболее слабая связь, энергия ее примерно на два порядка ниже энергии связи ионных и ковалентных кристаллов.

Почти на порядок выше энергия связи кристаллов с водородными связями.

Таблица 4.1 - Классификация кристаллов по типам связей с указанием энергии связи

Тип кристалла

Пример

Энергия связи,

кДж-моль-1

Ионный

NaCl

753,6

LiF

1004,8

С ковалентной связью

Алмаз

711,8

SiC

1184,9

Металлический

Na

108,9

Fe

393,6

Молекулярный

Ar

7,5

CH4

10,1

С водородными связями

H2O (лед)

50,2

HF

29,3

Энергия металлической связи, возникающая в результате обобществления валентных электронов, по порядку величины сравнима с энергией связи ионных и ковалентных кристаллов, но все же меньше последней в несколько раз.

Лекция 5

Дефекты в кристаллах

5.1 Классификация дефектов в кристаллах

5.2 Точечные дефекты в кристаллах

5.3 Дислокации

5.4 Границы зерен

5.5 Прочность твердых тел

Изложенные ранее рассуждения о строении кристаллов и о кристаллической решетке, строго говоря, относятся только к так называемым идеальным кристаллам. Всякий же реальный кристалл не имеет такой совершенной структуры и обладает рядом нарушений идеальной пространственной решетки, которые называются дефектами в кристаллах. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными (т. е. зависящими от дефектов структуры) свойствами являются электропроводность, фотопроводимость, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить, исходя из предположения об их зависимости от дефектов. В настоящее время основные сведения о дефектах необходимы не только физикам, но также конструкторам и создателям приборов на основе твердых тел, занимающимся выращиванием совершенных моно­кристаллов.