- •Технология сварки чугуна
- •11.1. Состав и свойства
- •11.2. Основные сведения о свариваемости. Технологические рекомендации по дуговой сварке
- •Горячая сварка чугуна
- •Холодная и полугорячая сварка чугуна электродами, обеспечивающими получение серого чугуна в металле шва
- •11.5. Составы порошковых проволок и наплавленного ими металла для холодной и полугорячей сварки чугуна, %
- •Холодная сварка чугуна электродами, обеспечивающими получение в наплавленном металле низкоуглеродистой стали.
- •Холодная сварка чугуна электродами, обеспечивающими получение в металле шва цветных и специальных сплавов
Технология сварки чугуна
11.1. Состав и свойства
Чугун получил широкое распространение как конструкционный материал в машиностроительной, металлургической и других отраслях промышленности в связи с рядом преимуществ перед многими материалами, среди которых ос-новные - невысокая стоимость и хорошие литейные свойства. Изделия, изготов-ленные из него, имеют достаточно высокую прочность и износостойкость при работе на трение и характеризуются меньшей, чем сталь, чувствительностью к концентраторам напряжений. Наряду с перечисленными преимуществами из-делия из серого литейного чугуна хорошо обрабатываются режущим инстру-ментом. Последнее вместе с хорошими литейными свойствами позволяет оце-нить чугун как весьма технологичный материал.
К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,11 % (2,14 %). В этих сплавах обычно присутствует также крем-ний и некоторое количество марганца, серы и фосфора, а иногда и другие эле-менты, вводимые как легирующие добавки для придания чугуну определенных свойств. К числу таких легирующих элементов можно отнести никель, хром, магний и др.
В зависимости от структуры чугуны подразделяют на белые и серые. В белых чугунах весь углерод связан в химическое соединение карбид железа Fe3C - цементит. В серых чугунах значительная часть углерода находится в структурно-свободном состоянии в виде графита. Если серые чугуны хорошо поддаются механической обработке, то белые обладают очень высокой твер-достью и режущим инструментом обрабатываться не могут. Поэтому белые чугуны для изготовления изделий применяют крайне редко, их используют главным образом в виде полупродукта для получения ковких чугунов. Полу-чение белого или серого чугуна зависит от состава и скорости охлаждения.
В зависимости от структуры чугуны классифицируют на высокопрочные (с шаровидным графитом) и ковкие. По степени легирования чугуны подраз-деляют на простые, низколегированные (до 2,5 % легирующих элементов), среднелегированные (2,5 ... 10 % легирующих элементов) и высоколегирован-ные (свыше 10 % легирующих элементов).
Шире всего используют простые и низколегированные серые литейные чугуны.
Главный процесс, формирующий структуру чугуна, - процесс графити-зации (выделение углерода в структурно-свободном виде), так как от него за-висит не только количество, форма и распределение графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графи-тизации матрица можетбыть перлитно-цементитной (П + Ц), перлитной (П), перлитно-ферритной (П + Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит - структурно-свободным. Некоторые эле-ввменты, вводимые в чугун, способствуют графитизации, другие - препятствуют. На рис. 11.1 знаком "-" обозначена графитизирующая способ-
ность рассматриваемых элементов, знаком "+" задерживающее процесс графи-тизации действие (отбеливание). Как следует из приведенной схемы, наиболь-шее графитизирующее действие оказывают углерод и кремний, наименьшее - кобальт и медь.
Рис. 11.1. Влияние различных легирующих элементов на
процесс графитизации углерода в чугунах
Наиболее сильно задерживают процесс графитизации (оказывают отбе-ливающее действие) сера, ванадий, хром. Поэтому в серых литейных чугунах всегда содержится значительное количество кремния.
Из рис. 11.2 следует, что при определенном содержании углерода увели-чение содержания кремния при прочих равных условиях способствует графити-зации чугуна и уменьшению количества цементита в базовой структуре (П -> Ф).
Рис. 11.2. Совместное влияние углерода и кремния на структуру чугуна:
П - перлит; Ф - феррит; Ц - цементит; Г - графит
Серый чугун маркируется буквами СЧ и цифрами, обозначающими пре-дел прочности чугуна данной марки при растяжении в МПа • 10-1. Наибольшее распространение получили чугуны марок: СЧ10, СЧ15, СЧ25, СЧЗО, СЧ35. Прочность серых чугунов всех марок при сжатии значительно превышает проч-ность при растяжении. Например, для чугуна марки СЧ20, имеющего предел прочности при растяжении 200 МПа, предел прочности при сжатии составляет 800 МПа. Для увеличения прочности чугуна графитовым включения придают шарообразную форму путем введения магния в ковш перед разливкой. При этом чугун приобретает и некоторую пластичность.
Высокопрочные чугуны маркируют буквами ВЧ и цифрами, характеризующими временное сопротивление чугуна при растяжении в МПа • 10-1. Нап-ример, ВЧ 60 или ВЧ 40.
Ковкие чугуны маркируют буквами КЧ и цифрами, обозначающими вре-менные сопротивления при растяжении (МПа • 10-1) и относительное удлине-ние (%). Примерами марок ковких чугунов могут служить КЧ 30-6; КЧ 33-8; КЧ 35-10; КЧ 37-12 с ферритной металлической основой и КЧ 45-7; КЧ 50-5 и
КЧ 60-3, имеющие перлитную основу.
Структура чугуна в большой степени зависит от скорости охлаждения. Например, при постоянстве суммарного содержания углерода и кремния, а так-же других элементов, входящих в его состав, можно получить ферритный, пер-литный, а также перлитно-ферритный чугун.