
- •ПРЕДИСЛОВИЕ
- •ОБЩИЕ ПРЕДСТАВЛЕНИЯ О НАУКЕ И ЕЁ МЕТОДОЛОГИИ
- •1.1. Наука как рациональная сфера человеческой деятельности
- •1.2. Классификация наук
- •1.3. Естествознание. Методы естественнонаучного познания мира
- •1.4. Естественнонаучная и гуманитарная культуры
- •Литература к главе 1
- •2.1. Современные представления об иерархических уровнях организации материи. Микро-, макро- и мегамиры
- •2.2. Этапы развития атомистической концепции
- •2.3. Фундаментальные взаимодействия в природе
- •Литература к главе 2
- •КОНЦЕПЦИИ ПРОСТРАНСТВА И ВРЕМЕНИ
- •3.1. Основные этапы развития представлений о пространстве и времени.
- •3.2. Основы классической механики и их связь со свойствами пространства и времени
- •3.3. Пространство и время в специальной и общей теории относительности
- •Литература к главе 3
- •СИММЕТРИЯ И ЗАКОНЫ СОХРАНЕНИЯ
- •4.2. Закон сохранения импульса
- •4.3. Закон сохранения энергии
- •4.3.1. Работа и кинетическая энергия
- •4.3.2. Потенциальная энергия
- •4.3.3. Полная механическая энергия
- •Литература к главе 4
- •5.1. Уравнение состояния. Нулевое начало термодинамики
- •5.2. Первое начало термодинамики
- •5.3. Второе начало термодинамики. Энтропия и её статистический смысл
- •Макросостояние
- •5.4. Третье начало термодинамики
- •5.5. Гипотеза «тепловой смерти» Вселенной
- •5.6. Термодинамика открытых систем
- •Литература к главе 5
- •КОНЦЕПЦИЯ ЭЛЕКТРОМАГНЕТИЗМА
- •6.2. Электрический ток. Закон Ома
- •6.3. Магнитное поле движущихся зарядов
- •6.4. Электромагнитная теория Максвелла
- •6.5. Электромагнитные волны
- •6.6. Волновая оптика
- •6.7. Интерференция света
- •6.8. Дифракция света
- •Литература к главе 6
- •КВАНТОВЫЕ СВОЙСТВА МАТЕРИИ
- •7.1. Корпускулярно-волновой дуализм света и микрочастиц
- •7.2. Принцип неопределённости Гейзенберга и принцип дополнительности Бора
- •7.3. Вероятностно-статистический характер поведения микрочастиц
- •7.4. Релятивистская квантовая физика. Физический вакуум
- •7.5. Атомы, молекулы и вещество с точки зрения квантовой теории
- •7.6. Типы химических связей
- •Литература к главе 7
- •АСТРОНОМИЧЕСКАЯ КАРТИНА МИРА
- •8.1. Общие представления о Вселенной и её происхождении
- •8.1.1. Модели нестационарной Вселенной
- •8.1.2. Модель горячей Вселенной
- •8.1.3. Модель раздувающейся Вселенной
- •8.2. Звёзды и галактики
- •8.3. Солнечная система. Происхождение и строение Земли
- •Литература к главе 8
- •БИОЛОГИЧЕСКАЯ КАРТИНА МИРА
- •9.1. Гипотезы происхождения жизни
- •9.2. Основные принципы эволюции жизни
- •9.3. Появление человека на Земле и его эволюция
- •9.4. Биологическая клетка как элементарная единица живого
- •9.4.1. Строение клетки
- •9.4.2. Жизненный цикл клетки
- •9.4.4. Использование генетической информации в процессах жизнедеятельности. Синтез белка
- •9.5. Виды живых систем. Свойства жизни
- •9.6. Основные уровни организации живого
- •Клеточный уровень.
- •Онтогенетический уровень.
- •Популяционно-видовой уровень.
- •Биогеоценотический уровень.
- •Литература к главе 9
- •КОНЦЕПЦИИ БИОСФЕРЫ И НООСФЕРЫ ЗЕМЛИ
- •10.1. Современные представления о биосфере Земли
- •10.2. Учение Вернадского о ноосфере
- •10.3. Общие представления о пневмасфере
- •10.4. Космические и биологические циклы
- •Литература к главе 10
- •КОНЦЕПЦИЯ САМООРГАНИЗАЦИИ
- •1.1. Самоорганизующиеся системы и их свойства
- •11.3. Самоорганизация в химических реакциях
- •11.4. Самоорганизация в живой природе и в человеческом обществе
- •Литература к главе 11
- •КОНЦЕПЦИЯ УСТОЙЧИВОГО РАЗВИТИЯ
- •12.1. Принципы устойчивого развития
- •12.2. Основные черты планетарного мышления
- •12.3. Универсальный эволюционизм
- •12.4. Путь к единой культуре
- •Литература к главе 12
- •СЛОВАРЬ ОСНОВНЫХ ТЕРМИНОВ
- •Абиотические факторы
- •Автотрофы
- •Адаптация
- •Аденин
- •Адроны
- •Аминокислоты
- •Аннигиляция
- •Античастицы
- •Антропоцентризм
- •Бактерии
- •Бактериофаг
- •Барионы
- •Белок
- •Биогеоценоз
- •Биосфера
- •Биосфероцентризм
- •Биоценоз
- •Бифуркация
- •Близкодействие
- •Вакуум физический
- •Вероятность
- •Вещество
- •Взаимодействие
- •Взрыв
- •Виртуальные частицы
- •Вирусы
- •Витализм
- •Внутренняя энергия
- •Галактика
- •Генетика
- •Генетический код
- •Геном
- •Генотип
- •Генофонд
- •Гетеротрофы
- •Гипотеза
- •Глюоны
- •Гравитационный коллапс
- •Гуанин
- •Дальнодействие
- •Дезоксирибонуклеиновая кислота (ДНК)
- •Диалектика
- •Динамическая система
- •Диссипативная структура
- •Диссипация
- •Доминанта
- •Душа
- •Естественный отбор
- •Живое вещество
- •Закон
- •Знание
- •Идеализация
- •Иерархия
- •Инвариантность
- •Интерпретация
- •Интуиция
- •Иррационализм
- •Истина
- •Информация
- •Катастрофа
- •Квазар
- •Квант
- •Кварки
- •Кибернетика
- •Клетка
- •Кодон
- •Конфайнмент
- •Концепция
- •Коэволюция
- •Ламаркизм
- •Лептоны
- •Лизосомы
- •Липиды
- •Литосфера
- •Личность
- •Мезоны
- •Менталитет
- •Метод
- •Методология
- •Микробы
- •Митоз
- •Мутация
- •Наследственность
- •Наука
- •Негэнтропия
- •Нейтрино
- •Нейтрон
- •Нейтронная звезда
- •Ноосфера
- •Нуклеиновые кислоты
- •Нуклеотид
- •Нуклоны
- •Онтогенез
- •Органеллы
- •Открытые системы
- •Парадигма
- •Параллакс
- •Парсек
- •Пневмасфера
- •Популяция
- •Прокариоты
- •Пульсары
- •Разум
- •Рационализм
- •Редупликация (репликация)
- •Реликтовое излучение
- •Рибонуклеиновая кислота (РНК)
- •Рибосомы
- •Самоорганизация
- •Симбиоз
- •Синергетика
- •Социум
- •Техносфера
- •Тимин
- •Универсум
- •Устойчивое развитие
- •Устойчивость биосферы
- •Фауна
- •Фенотип
- •Ферменты
- •Флора
- •Флуктуация
- •Фотон
- •Хроматин
- •Хромосомы
- •Центромера
- •Цивилизация
- •Цитозин
- •Чёрная дыра
- •Эволюционизм
- •Эволюция
- •Экологическая система
- •Экология
- •Элементарные частицы
- •Энтропия
- •Эукариоты
- •ОГЛАВЛЕНИЕ
Г Л А В А 7
КВАНТОВЫЕ СВОЙСТВА МАТЕРИИ
Современный прогресс в области естественных и технических наук основан на использовании достижений квантовой теории материи. Квантовая теория является сравнительно молодой наукой, её возраст чуть более ста лет. За столь малый промежуток времени были созданы квантовые теории излучения, элементарных частиц, атомного ядра, атома, молекул, газообразных, жидких и твёрдых веществ. Это в свою очередь создало условия для появления таких новых отраслей промышленности как атомная энергетика, микроэлектроника и др. Рассмотрение квантовой концепции начнём с анализа квантовой природы излучения.
7.1. Корпускулярно-волновой дуализм света и микрочастиц
Изучение явлений интерференции, дифракции, поляризации электромагнитных волн (упорядочения колебаний векторов напряжённостей электрического и магнитного полей) и дисперсии света (круга явлений, в которых важную роль играет зависимость показателя преломления среды от длины волны) привело, как это могло показаться, к окончательному утверждению волновой теории света. Однако при исследовании теплового излучения энергии нагретыми телами, фотоэлектрического эффекта (испускания электронов веществом под действием электромагнитного излучения), рассеяния рентгеновского излучения веществом было установлено, что объяснить эти
явления в рамках электромагнитной теории Максвелла не удаётся.
Разрешить эти противоречия удалось благодаря смелой гипотезе, высказанной в 1900 году немецким физиком М.Планком (1858–1947), согласно которой
излучение света происходит не непрерывно, а дискретно,
т. е. определёнными порциями (квантами), энергия которых определяется частотой ν :
ε = hν , |
(7.1) |
|
где |
ε – энергия |
кванта; h = 6,63·10–34 Дж·с – |
постоянная Планка (квант действия), являющаяся одной из универсальных постоянных в физике.
Гипотеза квантов энергии положила начало новой эры в развитии физики. Это привело к признанию наравне с атомизмом вещества «атомизма» энергии, дискретного, квантового характера излучения, что не укладывалось в рамки представлений классической физики. Давая оценку квантовой теории Планка, Эйнштейн писал: «Именно закон излучения Планка дал первое точное определение абсолютных величин атомов, независимо от других предложений. Более того, он убедительно показал, что, кроме атомистической структуры материи, существует своего рода атомистическая структура энергии, управляемая универсальной постоянной, введённой Планком. Это открытие стало основой для всех исследований в физике ХХ века и с того времени почти полностью обусловило её развитие. Без этого открытия было бы невозможно установить настоящую теорию молекул и атомов и энергетических процессов,
управляющих их превращениями. Более того, оно разрушило остов классической механики и электродинамики и поставило перед наукой задачу: найти новую познавательную основу для всей физики».
Развивая идею Планка, Эйнштейн в 1905 году выдвинул гипотезу о том, что свет не только излучается квантами, но распространяется и поглощается квантами,
и на её основе объяснил фотоэффект. С квантами света стали ассоциировать реальные элементарные частицы, которые были названы в 1929 году американским физикохимиком Г.Льюисом (1875–1946) фотонами. Фотон является особой частицей, так как в отличие от других частиц, например, электронов, протонов и т. п. он существует только в движении, причём скорость его движения равна скорости света. Масса покоя фотона равна нулю. Энергия фотонов определяется формулой Планка (7.1), а импульс
p = mc = h / λ , |
(7.2) |
где p – импульс фотона; m – масса фотона; c – скорость света; λ – длина волны.
Исследуя процессы излучения, Эйнштейн в 1909 году установил, что свет одновременно обладает и корпускулярными, и волновыми свойствами, т. е. свету фактически присущ корпускулярно-волновой дуализм
(двойственность), который нельзя объяснить с позиций классической физики. Таким образом, можно сказать, что свет представляет собой единство противоположных свойств – корпускулярного (квантового) и волнового (электромагнитного), дискретного и непрерывного. К
корпускулярным параметрам, характеризующих свет, относятся энергия и импульс, а к волновым – частота и длина волны. Корпускулярные и волновые параметры связаны между собой через соотношения (7.1) и (7.2).
Следующий шаг в развитии концепции корпускулярно-волнового дуализма был сделан в 1924 году французским физиком Луи де Бройлем (1892–1987). Осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, де Бройль выдвинул смелую гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые
другие частицы материи наряду с корпускулярными обладают и волновыми свойствами.
Согласно де Бройлю, каждому микрообъекту свойственны, с одной стороны, корпускулярные характеристики: энергия E и импульс p, а с другой, – волновые характеристики – частота ν и длина волны λ . Формулы, связывающие корпускулярные и волновые свойства частиц, такие же, как и для фотонов:
E = hν, p = h / λ . |
(7.3) |
Смелость гипотезы де Бройля заключалась именно в том, что приведённые формулы постулировались не только для фотонов, но и для других микрочастиц, и в частности для таких, которые обладают массой покоя отличной от нуля. Таким образом, с любой частицей, обладающей импульсом p (7.3), сопоставляется волновой процесс с
длиной волны, определяемой формулой де Бройля: