- •Тема 1. Предмет и метод статистики 3
- •2. Понятия и особенности статистической методологии
- •3. Основные этапы статистического исследования
- •4. Понятия и категории статистической науки
- •5. Организация государственной статистики в рф
- •6. Задачи статистики
- •2. Виды статистического наблюдения
- •Виды несплошного наблюдения и их характеристики:
- •3. Способы сбора статистической информации
- •4. Программно-методологические и организационные вопросы наблюдения
- •5. Ошибки наблюдения
- •2. Метод группировок
- •3. Виды группировок
- •4. Вторичные группировки
- •5. Комбинированные группировки
- •6. Ряды распределения
- •7. Многомерные группировки и их классификация
- •Тема 4. Абсолютные и относительные величины.
- •Единицы измерения абсолютной величины.
- •Виды абсолютных величин:
- •2. Сущность и значение относительных величин. Единицы их измерения
- •Единицы измерения относительных величин (ов)
- •3. Виды относительных величин (ов)
- •Тема 5. Средние величины.
- •2. Виды средних аналитических
- •3. Методика выбора формы средней
- •4. Свойства средней арифметической
- •5. Расчет средней методом отсчета от условного нуля упрощенным способом (методом момента)
- •6. Структурные средние (мода, медиана, дециль, квартиль) Мода и медиана
- •Расчет медианы в интервальном ряду распределения
- •Децили и квартили
- •Тема 6. Показатели вариации
- •Значение показателей вариации
- •6.2 Абсолютные показатели вариации (именованные)
- •6.3. Относительные показатели вариации
- •Принципы построения относительных показателей вариации
- •6.4. Меры вариации для сгруппированных данных
- •Правило сложения дисперсии
- •Пример расчета показателя вариации для сгруппированных данных
- •6.5. Математические свойства дисперсии
- •6.6. Расчет дисперсии упрощенным способом
- •6.7. Дисперсия альтернативного признака
- •Тема 7. Статистическое изучение взаимосвязи социально – экономических явлений
- •Тема 10. Выборочное наблюдение
- •7.1. Характеристика статистической связи
- •7.2. Формально статистические методы изучения связи.
- •Графический метод
- •7.3. Корреляционно – регрессионный метод изучения связи
- •7.3.1 Парная корреляция
- •7.3.2. Логический смысл параметров уравнения линейной регрессии
- •7.3.3 Множественная корреляция
- •7.4. Показатели тесноты связи
- •7.4.1 Параметрические показатели тесноты связи
- •2. Эмпирическое корреляционное отношение
- •3. Теоретическое корреляционное отношение (индекс корреляции)
- •4. Множественный коэффициент корреляции (совокупный)
- •6. Частные коэффициенты корреляции
- •7.4.2 Непараметрические показатели тесноты связи (эмпирические меры тесноты связи)
- •1. Коэффициент Фехнера
- •2. Коэффициент Спирмена (коэффициент корреляционных рангов)
- •3. Коэффициент контингенции
- •4. Коэффициент ассоциации
- •6. Коэффициент взаимной сопряженности
- •Тема 8 Ряды динамики.
- •Тема 10. Выборочное наблюдение Понятие, виды рядов динамики
- •Правило построения рядов динамики
- •Статистические характеристики ряда динамики
- •Средние показатели ряда динамики
- •Способы выявления основной тенденции ряда динамики
- •Метод укрупнения интервалов
- •Метод скользящих средних
- •Аналитическое выравнивание
- •Элементы прогнозирования и интерполяции.
- •Изучение сезонных колебаний.
- •Индексы сезонности
- •Сравнительный анализ рядов динамики.
- •Тема 9.Индексы
- •Тема 10. Выборочное наблюдение 67 Общие вопросы индексного метода
- •Индивидуальные индексы
- •Сводные индексы
- •Агрегатные индексы
- •Агрегатные индексы фиксированного состава
- •Агрегатные индексы переменного состава.
- •Индексы структурных сдвигов
- •Индекс покупательной способности рубля
- •Средне гармонический индекс
- •Цепные и базисные сводные индексы
- •Территориальные индексы
- •Индексный анализ в изучении экономической связи
- •Системы индексов
- •Тема 10. Выборочное наблюдение
- •2. Виды и схемы отбора.
Аналитическое выравнивание
Аналитическое выравнивание РД - наиболее эффективный способ выявления основной тенденции развития явления во времени. При этом уровни РД выражаются функцией от времени y=f(t). Задачей аналитического выравнивания является нахождение теоретической кривой, наилучшим образом отражающей черты фактической динамики. Т.е. аналитическое выравнивание состоит в подборе математической формулы, наилучшим образом описывающей эмпирические данные. В практике социально-экономических исследований используется выравнивание по любому рациональному многочлену, в т.ч. по прямой, параболе второго и третьего порядка, гиперболе, показательной функции и т.д. Выбор функции выравнивания носит вероятностный характер. Для выбора типа кривой, по которой производят аналитическое выравнивание необходимо построить эмпирическую кривую динамического ряда и прикинуть к какой функции она ближе или проанализировать показатели РД: 1) если абсолютные приросты уровней ряда по своей величине колеблются около const, то математической функцией, уравнение которой можно принять за основу выравнивания, будет прямая.
2
)
если приросты приростов уровней (т.е.
вторые разности или ускорения) колеблются
около постоянной величины, то за основу
аналитического выравнивания принимают
уравнение параболы второго или более
высокого порядка.
3
)
если уровни ряда изменяются с приблизительно
постоянным относительным показателем
(Тпр), то выравнивание производится по
показательной функции:
П
осле
того, как выбор теоретической кривой
осуществился, задача заключается в
нахождении параметров уравнения и
определении теоретических уровней РД.
При решении этой задачи используют
метод наименьших квадратов, когда
наилучшим приближением выравнивания
данных к эмпирическим считается такое,
при котором сумма квадратов отклонений
фактических значений от теоретических
стремится к минимуму:
В
ыравнивание
с применением метода наименьших квадратов
можно значительно упростить, разметив
временные уровни так, чтобы суммаt=0.
При этом различают два случая:
когда число членов РД нечетное, то за начало отсчета принимают серединный временной уровень ряда. Его значение принимают равным 0. Вверх следуют значения через -1, а вниз-через +1. При этом сумма t=0.
когда число членов ряда четное, то разбивка временных уровней происходит от серединной пары дат, при этом верхняя серединная дата принимается за -1, а нижняя за +1. Далее вверх следуют значения через -2, вниз через +2. Результаты аналитического выравнивания необходимо воспроизвести на графике эмпирических данных. Выявить основную тенденцию значит установить закон развития изменяющегося во времени процесса на всем рассматриваемом в данном РД промежутке времени.
Аналитическое выравнивание дает возможность определять действие систематических факторов на развитие социально-экономических явлений, определяемых в РД. Фактические уровни РД отклоняются от выравненных в разные стороны, образуя колеблющийся остаток, который называется случайной компонентой динамического ряда. Это делает возможным разложение уровней ряда на систематическую и случайную компоненты: y=f(t)+, f(t)-тренд, выражающий типические черты явления, которые описывает данный РД. -случайная компонента выражает действие множества случайных факторов, действующих в положительном и отрицательном направлениях. Оценка меры воздействия случайных факторов на уровни ряда производится с помощью формулы среднеквадратического отклонения:
Показатель
колеблемости уровней ряда около тренда
является одним из критериев правильности
выбора кривой для аналитическога
выравнивания.
