Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Allen and Holberg - CMOS Analog Circuit Design

.pdf
Скачиваний:
43
Добавлен:
05.06.2015
Размер:
2.21 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design

II.8-7

Transistor Layout

Metal

 

FOX

FOX

Active area

Polysilicon

drain/source

gate

 

Contact

L

Cut

 

 

W

Active area

 

drain/source

 

Metal 1

Figure 2.6-3 Example layout of an MOS transistor showing top view and side view at the cut line indicated.

Allen and Holberg - CMOS Analog Circuit Design

II.8-8

SYMMETRIC VERSUS PHOTOLITHOGRAPHIC INVARIANT

(a)

(b)

Figure 2.6-4 Example layout of MOS transistors using (a) mirror symmetry, and

(b) photolithographic invariance.

PLI IS BETTER

Allen and Holberg - CMOS Analog Circuit Design

II.8-9

Resistor Layout

Metal

FOX

FOX

 

Substrate

Active area (diffusion)

Contact

Active area or Polysilicon

W

 

 

 

 

Cut

L

Metal 1

(a) Diffusion or polysilicon resistor

Metal

FOX

FOX

FOX

Substrate

 

 

Active area (diffusion)

Well diffusion

Active area

W

Well diffusion

 

Contact

Cut

Metal 1

L

(b) Well resistor

Figure 2.6-5 Example layout of (a) diffusion or polysilicon resistor and (b) Well resistor along with their respective side views at the cut line indicated.

Allen and Holberg - CMOS Analog Circuit Design

II.8-10

Capacitor Layout

Metal

Polysilicon 2

 

FOX

 

Substrate

 

 

Polysilicon gate

 

Polysilicon gate

Polysilicon 2

 

Cut

 

 

Metal 1

(a)

Metal 3

Metal 2

Metal 1

FOX

Substrate

Metal 3

Metal 2

Metal 1

 

Metal 3

Via 2

Via 2

Metal 2

Cut

Via 1

Metal 1

Allen and Holberg - CMOS Analog Circuit Design

Page III.0-1

III. CMOS MODELS

Contents

III.1

Simple MOS large-signal model

 

Strong inversion

 

Weak inversion

III.2

Capacitance model

III.3

Small-signal MOS model

III.4

SPICE Level-3 model

Perspective

 

 

 

Chapter 10

Chapter 11

D/A and A/D

Analog Systems

Converters

 

 

SYSTEMS

 

 

 

Chapter 7

 

Chapter 8

Chapter 9

CMOS

Simple CMOS OP

High Performance

Comparators

 

AMPS

OTA's

COMPLEX

 

 

 

CIRCUITS

 

 

 

Chapter 5

 

Chapter 6

CMOS

 

CMOS Amplifiers

Subcircuits

 

 

SIMPLE

 

 

 

Chapter 2

 

Chapter 3

Chapter 4 Device

CMOS

CMOS Device

Characterization

Technology

 

Modeling

 

 

DEVICES

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-1

III.1 - MODELING OF CMOS ANALOG CIRCUITS

Objective

1.Hand calculations and design of analog CMOS circuits.

2.Efficiently and accurately simulate analog CMOS circuits.

Large Signal Model

The large signal model is nonlinear and is used to solve for the dc values of the device currents given the device voltages.

The large signal models for SPICE:

Basic drain current models -

1.Level 1 - Shichman-Hodges (VT, K', γ, λ, φ, and NSUB)

2.Level 2 - Geometry-based analytical model. Takes into account second-order effects (varying channel charge, short-channel, weak inversion, varying surface mobility, etc.)

3.Level 3 - Semi-empirical short-channel model

4.Level 4 - BSIM model. Based on automatically generated parameters from a process characterization. Good weak-strong inversion transition.

Basic model auxilliary parameters include capacitance [Meyer and Ward-Dutton (charge-conservative)], bulk resistances, depletion regions, etc..

Small Signal Model

Based on the linearization of any of the above large signal models.

Simulator Software

SPICE2 - Generic SPICE available from UC Berkeley (FORTRAN)

SPICE3 - Generic SPICE available from UC Berkeley (C)

*SPICE*- Every other SPICE simulator!

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-2

Transconductance Characteristics of NMOS when VDS = 0.1V

vGS ≤ VT:

 

+

 

iD

+

iD

 

vGS

 

 

Source

= VT -

 

 

VDS

 

Gate

Drain

- =0.1V

 

and

 

 

 

bulk

 

0

p substrate (bulk)

0 VT 2VT 3VT vGS

 

vGS = 2VT:

 

 

 

+

 

iD

+

 

 

 

 

vGS

 

Source

 

= 2VT -

 

 

 

 

 

 

VDS

 

Gate

Drain

- =0.1V

and

 

 

 

 

bulk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p substrate (bulk)

vGS = 3VT:

 

 

 

 

+

 

iD

+

 

 

 

 

 

vGS

 

Source

 

= 3VT

 

 

 

 

 

 

VDS

and

-

Gate

Drain

- =0.1V

 

 

 

 

bulk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p substrate (bulk)

iD

0

0 VT 2VT 3VT vGS

iD

0

0 V

2VT

3VT

vGS

T

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-3

Output Characteristics of NMOS for VGS = 2VT

vDS = 0V:

 

VGS +

 

iD

+ vDS iD

Source

= 2VT -

Gate

 

-

= 0V

and

 

Drain

 

 

 

 

bulk

0

p substrate (bulk)

0 0.5VT VT vDS

vDS = 0.5VT:

 

 

 

VGS +

 

 

iD

Source

= 2VT -

Gate

 

 

 

 

and

 

Drain

bulk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p substrate (bulk)

vDS = VT:

 

 

 

 

 

 

VGS +

 

 

 

iD

Source

= 2VT -

Gate

 

Drain

and

 

 

 

 

bulk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

p substrate (bulk)

+ vDS = iD

- 0.5VT

0

0 0.5VT VT vDS

+

iD

v DS

 

- =VT

 

0 0.5V T VT vDS

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-4

Output Characteristics of NMOS when vDS = 4VT

vGS = VT:

 

vGS = +

 

iD

+ vDS = iD

 

 

 

Source

VT -

Gate

Drain

- 4VT

 

 

 

and

 

 

 

 

 

bulk

 

 

 

 

 

 

 

 

 

 

 

vDS(sat)

 

 

 

 

 

 

0

 

 

4V vDS

p substrate (bulk)

 

 

0 V

2V

3V

 

 

 

 

T

T

T

T

vGS = 2VT:

 

vGS =

+

 

iD

Source

 

 

2VT

-

Gate

Drain

and

 

 

bulk

 

 

 

 

p substrate (bulk)

vGS = 3VT:

 

vGS = +

 

iD

Source

3VT

-

Gate

 

and

 

Drain

 

 

bulk

p substrate (bulk)

+ vDS = iD - 4VT

vDS(sat)

0

0 VT 2VT 3VT 4VT vDS

+ vDS = iD - 4VT

vDS(sat)

0

0 VT 2VT 3VT 4VT vDS

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-5

Output Characteristics of an n-channel MOSFET

2.0Output Characteristics of a n-channel MOSFET

.MODEL MN1K100 NMOS VTO=1 KP=200U LAMBDA=0.01

 

.DC VDS 0 10 0.5 VGS 1 5 1

VGS=5V

 

MOSFET1 2 1 0 0 MN1K100

 

 

 

.PRINT DC ID(MOSFET1)

 

1.5

VGS 1 0

 

VDS 2 0

 

 

.PROBE

 

 

.END

 

iD (mA)

 

 

1.0

 

VGS=4V

0.5

 

 

 

VGS=3V

 

 

 

 

 

VGS=2V

 

0

 

 

 

VGS=1V

 

0

2

4

6

 

8

10

 

 

 

vDS (V)

 

 

 

Transconductance Characteristics of an n-channel MOSFET

 

2.0

Transconductance Characteristics of a n-channel MOSFET

 

VDS=8V

 

 

 

 

 

.MODEL MN1K100 NMOS VTO=1 KP=200U LAMBDA=0.01

VDS=6V

 

 

.DC VGS 0 5 0.5 VDS 2 8 2

 

 

 

 

 

 

 

 

 

 

 

MOSFET1 2 1 0 0 MN1K100

 

 

 

VDS=4V

 

1.5

.PRINT DC ID(MOSFET1)

 

 

 

 

 

 

 

 

 

 

VGS 1 0

 

 

 

 

 

 

VDS 2 0

 

 

 

 

 

iD (mA)

.PROBE

 

 

 

 

 

.END

 

 

 

 

VDS=2V

 

 

 

 

 

 

 

 

 

 

 

1.0

0.5

0

0

1

2

3

4

5

vGS(V)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]