Скорость
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.
Вектором средней скорости <v> называется отношение приращения r радиуса-вектора точки к промежутку времени t:
(2.1)
Направление вектора средней скорости совпадает с направлением r. При неограниченном уменьшении t средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:
![]()

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рис. 3). По мере уменьшения t путь s все больше будет приближаться к |r|, поэтому модуль мгновенной скорости
![]()
Таким образом, модуль мгновенной скорости равен первой производной пути по времени:
(2.2)
При неравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной v — средней скоростью неравномерного движения:
![]()
Из рис. 3 вытекает, что v> |v|, так как s > |r|, и только в случае прямолинейного движения
![]()
Если выражение ds = vdt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t + t, то найдем длину пути, пройденного точкой за время t:
(2.3)
В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид
![]()
Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом
![]()
§ 3. Ускорение и его составляющие
Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.
Средним ускорением неравномерного движения в интервале от t до t + t называется векторная величина, равная отношению изменения скорости v к интервалу времени t
![]()
Мгновенным ускорением а (ускорением) материальной точки в момент времени t будет предел среднего ускорения:
![]()
Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.
Тангенциальная составляющая ускорения
![]()
т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.
Найдем вторую составляющую ускорения. Допустим, что точка В достаточно близка к точке А, поэтому s можно считать дугой окружности некоторого радиуса r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует vn/AB = v1/r, но так как AB = vt, то
![]()
В пределе при получим .

Поскольку , угол EAD стремится к нулю, а так как треугольник EAD равнобедренный, то угол ADE между v и vn стремится к прямому. Следовательно, при векторы vn и v оказываются взаимно перпендикулярными. Tax как вектор скорости направлен по касательной к траектории, то вектор vn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускорения, равная
![]()
называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).
Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис.5):
![]()
Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту изменения скорости по направлению (направлена к центру кривизны траектории).
3. Прямолинейное (равномерное и равноускоренное) движение. Графики зависимости координаты и скорости от времени.
В зависимости от тангенциальной и нормальной составляющих ускорения движение можно классифицировать следующим образом:
1) , аn = 0 — прямолинейное равномерное движение;
2) , аn = 0 — прямолинейное равнопеременное движение. При таком виде движения
![]()
Если начальный момент времени t1=0, а начальная скорость v1=v0, то, обозначив t2=t и v2=v, получим , откуда
![]()
Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения
![]()

3) , аn = 0 — прямолинейное движение с переменным ускорением;
4) , аn = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы an=v2/r следует, что радиус кривизны должен быть постоянным. Следовательно, движение по окружности является равномерным;
5) , — равномерное криволинейное движение;
6) , — криволинейное равнопеременное движение;
7) , — криволинейное движение с переменным ускорением.
