Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диф. уравнения .doc
Скачиваний:
63
Добавлен:
04.06.2015
Размер:
764.93 Кб
Скачать

Линейные дифференциальные уравнения 1 порядка

Линейные дифференциальные уравнения это вида , где P(x), Q(x) – непрерывные функции.

и входят в уравнение линейно, т.е не перемножаются между собой.

Сделаем замену:

Приравняем скобку к 0

подставим

- дифференциальное уравнение с разделяющимися переменными.

константу интегрирования не прибавляем, т.к достаточно одного частного решения.

Выразим явно

Подставим в (*)

Выразим

Т.к , то проинтегрируем обе части последнего уравнения по х

Общее решение линейного уравнения:

- всегда получается в явном виде.

Пример:

1)

2) y(1)=2

Уравнения Бернулли

, где ;1

Решаются такие уравнения так же как и линейные

Замена

Явно

- дифференциальное уравнение с разделяющимися переменными.

выразим явно u и найдём общее решение

Примеры:

1)

Дифференциальные уравнения высших порядков

Определение: Дифференциальное уравнение порядка n называется уравнение вида:

уравнение вида: – называется уравнением разрешенным относительно старшей производной. Для такого уравнения справедлива теорема Коши.

Теорема Коши.

Если функция в (*) непрерывна вместе с частными производными:

в области содержащей значения

, то существует единственное решение дифференциального уравнения удовлетворяющее начальным условиям:

Замечание: для дифференциальных уравнений 2 порядка

начальные условия имеют вид:

Решить дифференциальное уравнение порядка n означает:

1)Найти общее решение (общий интеграл)

2)Найти частное решение (частный интеграл), удовлетворяющее заданным условиям.

Определение: Общим решением дифференциального уравнения 2 порядка

является функция , такая что:

1) при любых значениях с1 и с2 эта функция – решение.

2) каковы бы ни были начальные условия на области, в которой выполняется теорема Коши всегда можно подобрать значения с1 и с2 удовлетворяющие начальным условиям.

Определение: Частным решением дифференциального уравнения 2 порядка является решение, при конкретных значениях с1 и с2.

Замечание: общее решение дифференциального уравнения 2 порядка может быть получено в неявном виде:

Дифференциальные уравнения 2 порядка, допускающие понижение порядка

1) Уравнения вида:

уравнение решается двукратным интегрированием по переменной х.

Проинтегрируем 1 раз по х.

Проинтегрируем 2 раз по х

общее решение.

Замечание: для дифференциального уравнения порядка n: - интегрировать нужно n раз.

Примеры:

2) Дифференциальные уравнения не содержащие явно y.

- нет явно y

Замена

Подставим замену в дифференциальное уравнение, получим

получим дифференциальное уравнение 1 порядка.

Найдём решение этого уравнения:

сделаем обратную замену

проинтегрируем обе части по х - общее решение

Пример:

3) Дифференциальные уравнения 2 порядка не содержащие явно х.

- нет явно х.

Замена: у-новая переменная

- новая функция

- её производная

Подставим замену в исходное уравнение

получим дифференциальное уравнение 1 порядка:

- его решение

Сделаем обратную замену -

- дифференциальное уравнение с разделяющимися переменными. Разделим переменные:

; - общее решение (вид неявный)

Примеры:

1.

2.

Линейные дифференциальные уравнения высших порядков

Уравнение вида: называется линейным дифференциальным уравнением высшего порядка, где a01,…аn-функции переменной х или константы, причём a01,…аn и f(x) считаются непрерывными.

Если a0=1(если то на него можно разделить) уравнение примет вид:

Если уравнение неоднородное.

уравнение однородное.

Линейные однородные дифференциальные уравнения порядка n

Уравнение вида: называются линейными однородными дифференциальными уравнениями порядка n.

Для этих уравнений справедливы следующие теоремы:

Теорема 1: Если - решение , то сумма - тоже решение

Доказательство: подставим сумму в

Т.к производная любого порядка от суммы равна суме производных, то можно перегруппироватся , раскрыв скобки:

т.к y1 и y2 – решение.

0=0(верно)сумма тоже решение.

теорема доказана.

Теорема 2: Если y0-решение , то - тоже решение .

Доказательство: Подставим в уравнение

т.к С выносится за знак производной, то

т.к решение, 0=0(верно)Сy0-тоже решение.

теорема доказана.

Следствие из Т1 и Т2: если - решения (*) линейеая комбинация -тоже решение (*).