
- •1.Взаимодействие заряженных тел. Закон сохранения электрического заряда. Закон кулона.
- •2.Электрическое поле. Напряженность электрического поля. Силовые линии. Однородное электрическое поле.
- •3. Работа сил электрического поля (с выводом). Потенциал. Разность потенциала. Связь напряженности и напряжения.
- •4. Проводники и диэлектрики в электрическом поле. Электрическая индукция проводников и поляризация диэлектриков.
- •5.Электроемкость проводника. Конденсаторы. Соединение конденсаторов и их применение.
- •6. Электрический ток в металлах. Сила тока и плотность тока. Закон ома для участка цепи.
- •7. Сопротивление проводников. Удельное сопротивление. Температурная зависимость сопротивления. Сверхпроводимость.
- •8. Последовательное соединение проводников. Законы последовательного соединения.
- •14. Сила ампера. Правило левой руки. Применение силы Ампера.
- •15. Гипотеза Ампера. Магнитные свойства вещества. Ферромагнетики.
- •16. Электромагнитная индукция. Опыты Фарадея. Закон электромагнитной индукции. Правило Ленца.
- •17. Основные положения теории Максвелла. Вихревое электрическое поле. Токи Фуко
- •18. Явление самоиндукции. Индуктивность. Энергия магнитного поля салиноида.
- •19. Полупроводники. Собственная проводимость полупроводников. Термо- и фоторезисторы и их применение.
- •20. Примесная проводимость полупроводников . Р-н переход. Диод, транзистор и их применение.
- •21. Электрический ток в растворах и расплавах электролитов. Законы электролиза.
- •22. Электрический ток в газах. Самостоятельный и несамостоятельный электрический заряд. Типы газовых зарядов
- •23. Электрический ток в вакууме. Термоэлектронная эмиссия. Диод. Триод. Электронно – лучевая трубка.
- •24. Магнитное поле. Взаимодействие параллельных проводников с током. Сила взаимодействия.
- •30. Гипотеза Ампера. Магнитные свойства вещества. Ферромагнетики.
- •31. Электромагнитная индукция. Выводы эдс индукции в движущихся проводниках.
- •32. Опыты Фарадея. Закон электромагнитной индукции. Правило ленца.
- •33. Основные положения теории Максвелла. Вихревое электрическое поле. Токи Фуко.
- •34. Явление самоиндукции. Закон индукции. Индуктивность. Энергия магнитного поля соленоида.
- •35. Свободные электромагнитные колебания. Колебательный контур. Формула Томсона. Превращение энергии при электромагнитных колебаниях.
- •36. Переменный ток – вынужденные электромагнитные колебания. Получение переменного тока. Электромеханический индукционный генератор.
- •37. Активное и реактивное сопротивление. Действующие значение силы тока и напряжения.
- •38. Трансформатор. Устройство и принцип действия трансформатора. Режимы работы трансформатора. Баланс мощности. Кпд трансформатора.
- •39. Передача электроэнергии. Линии электропередачи переменного и постоянного тока. Единая энергосистема России.
- •40. Генератор высокой частоты на диоде (транзисторе) как автоколебательная система.
- •41. Электромагнитные волны и их свойства. Опыты Герца.
- •42. Изобретение радио а.С.Поповым. Принципы современной радиосвязи. Амплитудная модуляция и детектирование.
- •43. Природа света. Элементы фотометрии: энергетические и фотометрические величины. Законы освещённости
- •44. Принцип Гюйгенса. Законы отражения и преломления света. Физический смысл показателя преломления света.
- •45. Линзы. Формула тонкой линзы. Построение изображений в линзах.
- •46. Интерференция света. Опыт Юнга. Когерентные волны. Цвета тонких пленок и применение интерференции.
- •47. Явление дифракции. Дифракционная решетка как спектральный прибор. Определение длины волны света.
- •48. Дисперсия света. Монохроматическое излучение. Состав белого света. Виды спектров. Спектроскоп и спектрограф.
- •49. Опыты Резерфорда по рассеиванию а – частиц. Ядерная модель атома.
- •50. Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ.
- •51. Открытие фотоэффекта а.Г .Столетовым. Законы фотоэффекта.
- •52. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.
- •54. Свойство радиоактивных излучений. Закон радиоактивного распада.
- •55. Состав ядра атома. Изотопы. Определение состава ядра атома.
- •56. Дефект массы. Энергия связи ядра атома. Определение энергии связи
- •57. Ядерные реакции. Различные типы ядерных реакций.
- •58. Энергетический выход ядерных реакций . Расчет энергетического выхода.
- •59. Цепная ядерная реакция. Условия ее протекания. Термоядерная реакция.
- •60. Ядерный реактор. Применение атомной энергии.
30. Гипотеза Ампера. Магнитные свойства вещества. Ферромагнетики.
Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах).
Гипотеза Ампера – о происхождении магнитных свойств: каждый атом имеет свое собственное магнитное поле, т.е. движение электронов по орбитам направленное и его и его можно применить за круговой ток.
31. Электромагнитная индукция. Выводы эдс индукции в движущихся проводниках.
Электромагнитная индукция— явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Под действием Fл внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l. Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.
32. Опыты Фарадея. Закон электромагнитной индукции. Правило ленца.
Закон электромагнитной индукции- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Правило Ленца – индукционный ток в замкнутой катушки, имеет такое направление, что созданный им магнитный поток, припятствует изменению магнитного поля, вызвало данный ток.
Опыт Фарадея.Индукционный ток появляется при относительном движении катушки и магнита
33. Основные положения теории Максвелла. Вихревое электрическое поле. Токи Фуко.
Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко)— вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока
Токи Фуко(в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.
Идеи Максвелла:
1.Переменное магнитное поле порождает в пространстве вихревое переменное магнитное поле
2. Переменное магнитное поле порождает в пространстве переменное вихревое электрическое поле
Вехривое электрическое поле – 1. Создается переменным магнитным полем; 2. Силовые линии замкнуты, нет ни начала ни конца.; 3. Работа на замкнутом пути равна ЭДС и не равна 0
34. Явление самоиндукции. Закон индукции. Индуктивность. Энергия магнитного поля соленоида.
Самоиндукция – порождение индукционного тока в том же самом проводнике, по которому течет переменный ток
Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.
Солено́ид— разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.