- •Раздел IV
- •1. Частота сердечных сокращений
- •2. Ударный объем
- •1. Функциональные кривыeжелудочка
- •2. Оценка систолической функции
- •3. Оценка диастол ической функции
- •2. Факторы, определяющие величину коронарного кровотока
- •2. Выбор анестетиков и вспомогательных средств:
- •1. Общие принципы
- •2. Премедикация
- •1. Митральный стеноз Общие сведения
- •2. Митральная недостаточность Общие сведения
- •3. Пролапс митрального клапана Общие сведения
- •4. Аортальный стеноз Общие сведения
- •5. Гипертрофическая кардиомиопатия Общие сведения
- •6. Аортальная недостаточность Общие сведения
- •7.Трикуспидалвная недостаточность Общие сведения
- •1. Обструктивные поражения
- •2. Простые шунты
- •3. Сложные шунты
- •1 Частота импульсов автоматически изменяется в зависимости от потребности в сердечном выбросе.— Примеч. Пер.
- •21Анестезия в сердечнососудистой хирургии
- •1. Преиндукционный период Премедикация
- •2. Индукция анестезии
- •3. Предперфузионный период
- •4. Перфузионный период Начало ик
- •5. Завершение ик
- •6. Постперфузионный период
- •7. Послеоперационный период
- •1. Тампонада сердца Общие сведения
- •2. Констриктивный перикардит Общие сведения
- •22Физиология дыхания и анестезия
- •1. Аэробный метаболизм
- •2. Анаэробный метаболизм
- •3. Влияние анестезии на клеточный метаболизм
- •1. Грудная клетка и дыхательная мускулатура
- •2. Трахеобронхиальное дерево
- •3. Кровообращение и лимфоток в легких
- •4. Иннервация
- •3. Неэластическое сопротивление
- •4. Работа дыхания
- •5. Влияние анестезии на механику дыхания
- •1. Вентиляция
- •2. Легочный kpobotok
- •3. Шунты
- •4. Влияние анестезии на газообмен
- •1. Кислород
- •2. Углекислый газ
- •1. Кислород
- •2. Углекислый газ
- •2. Центральные рецепторы
- •3. Периферические рецепторы Периферические хеморецепторы
- •4. Влияние анестезии на регуляцию дыхания
- •23Анестезия при сопутствующих заболеваниях легких
- •24Анестезия
- •1. Опухоли
- •2. Легочные инфекции
- •3. Бронхоэктазы
- •1. Предоперационный период
- •2. Интраоперационный период Подготовка
- •3. Послеоперационный период Общие принципы
- •1. Предоперационный период
- •2. Интраоперационный период Мониторинг
- •3. Послеоперационный период
- •25Нейрофизиология и анестезия
- •1. Церебральное перфузионное давление
- •2. Ауторегуляция мозгового кровообращения
- •3. Внешние факторы
- •1. Испаряемые анестетики Метаболизм мозга
- •2. Закись азота
- •1.Для индукции анестезии
- •2. Вспомогательные средства
- •4. Вазодилататоры
- •5. Миорелаксанты
- •26Анестезия в нейрохирургии
- •28Нарушения водно-электролитного обмена
- •2. Предсердный натрийуретический пептид
- •29Инфузионно-трансфузионная терапия
- •1.Гемолитические реакции
- •2. Негемолитические иммунные реакции
- •30Кислотно-основное состояние
- •31Физиология почки и анестезия
- •1. Антагонисты альдостерона (Спиронолактон)
- •2. Неконкурентные
- •32Анестезия при сопутствующих заболеваниях почек
- •33Анестезия
- •199034, Санкт-Петербург, 9 линия, 12
2. Вспомогательные средства
При в/в введении лидокаин уменьшает метаболические потребности мозга, MK и ВЧД, но в меньшей степени, чем неингаляционные анестетики. Главное преимущество лидокаина — снижение MK (в результате вазоконстрикции сосудов мозга) без влияния на системное кровообращение. Токсичность и риск возникновения судорог ограничивают введение повторных доз лидокаина (при в/в введении лидокаин действует кратковременно).
Дроперидол практически не влияет на метаболические потребности мозга и умеренно снижает MK. В сочетании с опиоидами (методика нейролептанальгезии) дроперидол может значительно замедлить пробуждение и восстановление сознания. Налоксон и флумазенил, устраняя действие опиоидов и бензодиазепинов соответственно, ликвидируют также их благоприятное влияние на метаболические потребности мозга и MK. При введении налоксона (но не флумазени-ла) может развиться тяжелая артериальная гипертония.
З.ВАЗОПРЕССОРЫ
При ненарушенном гематоэнцефалическом барьере и сохраненной ауторегуляции мозгового кровообращения вазопрессоры способны увеличить MK, только если АДср выше 150- 160ммрт. ст. или ниже
50-60 мм pm. cm. Если механизмы ауторегуляции повреждены, то вазопрессоры увеличивают ЦПД и MK. Метаболические потребности мозга возрастают параллельно MK. (3-Адреномиметики стимулируют центральные |3гадренорецепторы, что увеличивает метаболические потребности мозга и MK; повышение проницаемости гематоэнцефалическо-го барьера усиливает эффект р-адреномиметиков. (3-Адреномиметики не оказывают прямого влияния на метаболизм мозга и MK. Ct2-Адреномиметики вызывают вазоконстрикцию сосудов мозга. Чрезмерное увеличение АД при использовании любого вазопрессора нарушает целостность гематоэнцефа-лического барьера.
4. Вазодилататоры
В отсутствие артериальной гипотонии большинство вазодилататоров вызывает дозозависимое расширение сосудов головного мозга и увеличение MK. Когда вазодилататоры снижают АД, то MK не уменьшается или даже немного повышается, что приводит к увеличению внутричерепного объема крови. При сниженной растяжимости внутричерепной системы вазодилататоры могут значительно увеличить ВЧД. Триметафан — единственный из этой группы препаратов, практически не влияющий на MK и внутричерепной объем крови.
5. Миорелаксанты
Миорелаксанты действуют на ЦНС опосредованно. Они вызывают расширение сосудов мозга (вследствие высвобождения гистамина) и повышают АД, что приводит к увеличению ВЧД. С другой стороны, миорелаксанты могут вызвать артериальную гипотонию (вследствие высвобождения гистамина и блокады вегетативных ганглиев), что уменьшает ЦПД. Сукцинилхолин, активируя мышечные веретена, возбуждает ЦНС, что приводит к увеличению ВЧД. Адекватная доза тиопентала, гипервентиляция и дефасциркулирующая доза деполяризующего миорелаксанта (особенно метоку-рина) существенно уменьшают выраженность подъема ВЧД при применении сукцинилхолина. Тубокурарин, атракурий, метокурин и мивакурий высвобождают гистамин. При введении больших доз панкурония развивается артериальная гипертония, при использовании тубокурарина может наступить блокада вегетативных ганглиев.
В большинстве случаев повышение ВЧД при введении миорелаксантов обусловлено недостаточной глубиной анестезии во время ларингоскопии и интубации трахеи. При длительном апноэ
возникают гиперкапния и гипоксия, которые также приводят к значительному подъему ВЧД.
Защита мозга от ишемии Патофизиология ишемии мозга
Из-за высокой потребности в кислороде и глюкозе мозг чрезвычайно чувствителен к ишемии. Нарушение перфузии мозга, гипогликемия и гипоксия быстро вызывают повреждение нейронов; снижение перфузии, помимо того, приводит к накоплению токсических продуктов обмена. Если PaO2, MK и уровень глюкозы в крови не нормализуются в течение 3-8 мин, то запасы АТФ истощаются и наступает необратимое повреждение мозга. Внутриклеточная концентрация K+ снижается, Na+-повышается (см. также гл. 19). Особенно важно увеличение внутриклеточной концентрации Ca2+, которое осуществляется в результате следующих процессов: (1) АТФ-зависимая помпа из-за недостатка кислорода и глюкозы не способна перемещать ионы кальция из цитозоля наружу или во внутриклеточные цистерны; (2) внутриклеточная концентрация Na+увеличивается (гл. 19); (3) происходит выброс возбуждающего нейротрансмитте-ра глутамата (гл. 18).
Устойчивое увеличение внутриклеточной концентрации Ca2+ активирует липазы и протеазы, что влечет за собой структурное повреждение нейронов. Повышение концентрации свободных жирных кислот наряду с высокой активностью цикло-оксигеназы и липоксигеназы приводит к образованию простагландинов и лейкотриенов — мощных медиаторов клеточного повреждения. Накопление токсичных продуктов обмена, таких как молочная кислота, вызывает дальнейшее повреждение нейронов и затрудняет регенерацию. Наконец, при ре-перфузии в участках ишемии происходит дополнительное повреждение тканей за счет образования свободных радикалов.
Стратегии защиты мозга
Выделяют очаговую (неполную) и тотальную (полную) ишемию мозга. Правда, такое разделение несколько искусственно, потому что главное значение имеет тяжесть ишемии, а не механизм ее развития, однако эта классификация полезна с клинической точки зрения. Тотальная ишемия мозга возникает при остановке кровообращения (из-за болезни сердечно-сосудистой системы или во время кардиохирургических операций с искусственным кровообращением, гл. 21) и при тяжелой
гипоксии (при дыхательной недостаточности, утоплении, асфиксии, анестезиологических осложнениях). К очаговой ишемии мозга приводят инсульт (ишемический и геморрагический) и травма мозга (закрытая ЧМТ, проникающая ЧМТ и хирургическая травма).
В некоторых случаях удается нормализовать функцию системы кровообращения, внешнее дыхание и кислородную емкость крови, восстановить просвет сосуда при окклюзии; эти мероприятия помогают возобновить перфузию и окигенацию мозга. Вокруг очага ишемии с необратимыми структурными нарушениями, в зоне пограничного кровотока (< 15 мл/ 100 г/мин), существует жизнеспособная область функционального повреждения. При быстрой нормализации перфузии функция нейронов в этой зоне может быстро восстановиться, поэтому ее называют "ишемическая пенум-бра" ("пенумбра" в переводе с греч. означает "полутень" — Прим. перев.).
С практической точки зрения меры по профилактике и лечению тотальной и очаговой ишемии мозга фактически не различаются. В обоих случаях необходимо увеличить ЦПД, снизить метаболические потребности мозга, блокировать действие медиаторов повреждения нейронов. Стратегией выбора является профилактика, потому что при состоявшейся ишемии защита мозга менее эффективна.
Гипотермия
Гипотермия — наиболее эффективный метод зашиты мозга от тотальной или очаговой ишемии. Глубокая гипотермия при полной остановке кровообращения в течение 1 ч во время кардиохирур-гических операций позволяет избежать повреждения ЦНС (гл. 21). В отличие от анестетиков гипотермия не только подавляет биоэлектрическую активность мозга, но и уменьшает базальные метаболические потребности мозга; иными словами, даже после появления изолинии на ЭЭГ метаболические потребности мозга продолжают снижаться. Умеренная гипотермия (до 33-35 0C) также защищает мозг от ишемии и, в отличие от глубокой, сопровождается меньшим числом побочных эффектов (гл. 6).
Анестетики
Барбитураты, этомидат, пропофол и изофлюран угнетают биоэлектрическую активность мозга вплоть до появления изолинии на ЭЭГ, но, к сожалению, не влияют на базальные метаболические потребности мозга. Все вышеперечисленные ане-
стетики, за исключением барбитуратов, подавляют метаболизм в различных отделах мозга неравномерно. Барбитураты, кроме того, увеличивают регионарный MK в участках ишемии, блокируют натриевые каналы, уменьшают отек мозга и поступление кальция в нейроны, устраняют puipi снижают образование свободных радикалов.
Исследования на животных и людях показали, что барбитураты защищают мозг при очаговой, но не при тотальной ишемии. Хотя в ряде опытов на животных продемонстрировано, что этомрадат, пропофол и, возможно, изофлюран позволяют предупредрпъ ишемию, результаты исследований носят противоречивый характер, а клинический опыт использования этих препаратов ограничен. Кетамин, теоретически, может предотвратить неблагоприятное воздействие на мозг глутамата, блокируя его связыванр!е с NMDA-рецепторами (NMDA — это N-метил-В-аспартат; гл. 18), однако данные, полученные после применения этого препарата на животных, также весьма спорны.
Ни один анестетик не способен защитить мозг от тотальной ишемии.
Антиишемические средства
Антагонисты кальция нимодипин и никардипин уменьшают неврологическое повреждение при геморрагическом и ишемическом инсультах. Оба препарата расширяют сосуды головного мозга; к сожалению, в некоторых исследованиях зарегистрировано увеличение MK, но не улучшение неврологического исхода. Назначение метилпреднизо-лона не позднее чем через 8 ч после травмы спинного мозга уменьшает неврологический дефр!-цит. Новый неглюкокортргкоидный стероид тири-лазад улучшает неврологаческий исход после субарахонорщального кровоизлияния. Акадезин, модулятор аденозина, снижает риск развития ршсульта после коронарного шунтированрш. Благоприятное влияние могут оказывать и другие препараты: магнрш, дексмедетомидин (а2-адреноб-локатор, параллельно воздействующий HaNMDA-рецепторы), декстрометорфан (неконкурентный блокатор NMDA-рецепторов), NBQX (блокатор АМРА-рецепторов; AMPA — а-амино-3-гидрокси-5-метил-4-изоксазолепропионовая кислота) и витамин E (антиоксидант).
Общие мероприятия
Наибольшее значение имеет поддержание достаточно высокого ЦПД. АД должно быть нормальным или немного увеличенным; нельзя допускать затруднения венозного оттока от мозга и повыше-
ния ВЧД. Оптимальная кислородная емкость крови достигается при гематокрите 30-34 % и нормальном PaO2. Гипергликемия усиливает повреждение нейронов при очаговой и тотальной ишемии мозга; и хотя эта зависимость может быть вторичным феноменом, следует тем не менее избегать чрезмерной гипергликемии (> 250 мг/100 мл, или > 13,75 ммоль/л). Необходимо поддерживать нормальное PaCO2, потому что при ишемии головного мозга и гипо-, и гиперкапния чреваты осложнениями: при гипокапнии возникает вазоконстрикция мозговых сосудов, усугубляющая ишемию, а гиперкапния вызывает феномен обкрадывания мозгового кровообращения (в случае очаговой ишемии) и способствует внутриклеточному ацидозу.
Влияние анестезии
на электрофизиологический
мониторинг
Электрофизиологический мониторинг позволяет оценить функциональную целостность ЦНС. В нейрохирургии чаще всего применяют электроэнцефалографию и вызванные потенциалы. Точность мониторинга зависит от исследуемой анатомической области и влияния анестезии. Оба вида мониторинга описаны в гл. 6.
Влияние анестетиков на ЭЭГ и вызванные потенциалы суммировано'в табл. 25-2 и 25-3. Правильная интерпретация результатов требует введения поправок на глубину анестезии, дозу отдельных анестетиков, АД, температуру тела, PaO2 и Pa-CO2. Замедление ритма на ЭЭГ при сочетании поверхностной анестезии и выраженной хирургической ретракции с относительной артериальной
ТАБЛИЦА 25-2. Влияние анестезии на ЭЭГ
Активация
|
Депрессия
|
Ингаляционные анесте-
|
Ингаляционные анестети-
|
тики (субанестетичес-
|
ки (1-2 МАК)
|
кие дозы)
|
|
Барбитураты
|
Барбитураты
|
(низкие дозы)
|
|
Бензодиазепины
|
Опиоиды
|
(низкие дозы)
|
|
Этомидат (низкие дозы)
|
Пропофол
|
Закись азота
|
Этомидат
|
Кетамин
|
Гипокапния
|
Умеренная гиперкапния
|
Значительная гипер-
|
|
капния
|
Сенсорная стимуляция
|
Гипотермия
|
Гипоксия (ранняя фаза)
|
Гипоксия (поздняя фаза)
|
|
Ишемия
|
гипотонией имеет большее диагностическое значение, чем при глубокой анестезии без хирургической стимуляции. (В первом случае изменения на ЭЭГ указывают на ишемию мозга, во втором — на глубокий уровень анестезии. — Прим. перев.) Вне зависимости от вида мониторинга, необходимо осуществлять регистрацию с обеих сторон (для сравнения), а также отмечать этапы операции и ход анестезии.
Электроэнцефалография
ЭЭГ-мониторинг применяют для оценки перфу-зии мозга при каротидной эндартерэктомии и управляемой артериальной гипотонии, а также для контроля глубины анестезии. Динамику ЭЭГ упрощенно можно описать, используя термины "активация" и "депрессия". Активация ЭЭГ (преимущественно высокочастотная низкоамплитудная активность) наблюдается при поверхностной анестезии и хирургической стимуляции, а депрессию ЭЭГ (в основном низкочастотная высокоамплитудная активность) — при глубокой анестезии и угнетении функции мозга. Большинство анестетиков вызывают двухфазное изменение ЭЭГ: вначале активацию (при субанестетических дозах), затем — дозозависимую депрессию.
ТАБЛИЦА 25-3. Влияние анестетиков на вызванные потенциалы
Анестетик
|
ССВП ЗВП АСВП
| |||||
am п
|
Лат Амп
|
Лат Амп
|
Лат
| |||
Закись азота
|
i
|
± 1
|
t ±
|
+
| ||
Га лота н
|
i
|
T ±
|
T ±
|
T
| ||
Энфлюран
|
I
|
t I
|
t ±
|
t
| ||
Изофлюран
|
I
|
T I
|
t ±
|
t
| ||
Барбитураты1
|
+
|
± i
|
T ±
|
±
| ||
Опиоиды1
|
±
|
± ±
|
+ ±
|
4-
| ||
Этом и дат
|
T
|
T
|
|
| ||
Пропофол
|
1
|
г
|
I
|
t
| ||
Бензодиа-
|
1
|
+
|
|
| ||
зепины
|
|
|
|
| ||
Кетам и н
|
+
|
T
|
|
|
1 В очень высоких дозах эти препараты снижают латент-ность и амплитуду ССВП. I — увеличение; | — уменьшение;
± — изменений нет или они незначительны; ? — неизвестно. Сокращения:
ССВП — соматосенсорные вызванные потенциалы; ЗВП — зрительные вызванные потенциалы; АСВП — акустические стволовые вызванные потенциалы; Амп — амплитуда; Лат — латентность.
Ингаляционные анестетики
Ингаляционные анестетики вызывают типичное двухфазное изменение ЭЭГ. Изофлюран — единственный ингаляционный анестетик, который в клинических дозах (1-2 МАК) подавляет биоэлектрическую активность вплоть до появления изолинии на ЭЭГ. При использовании десфлюрана и энфлюрана в высоких дозах (> 1,2 и > 1,5 МАК соответственно) можно добиться появления на ЭЭГ картины "всплеск-подавление", но не полного биоэлектрического молчания. Энфлюран способен вызвать появление спайков (эпилептиформную активность). Закись азота может вызвать атипичные изменения на ЭЭГ, когда одновременно увеличиваются и частота, и амплитуда (высокоамплитудная активация).
Неингаляционные анестетики
При применении бензодиазепинов на ЭКГ наблюдаются типичные двухфазные изменения. Барбитураты, пропофол и этомидат вызывают аналогичный эффект, а при увеличении дозы — ЭЭГ-картину "всплеск-подавление" и биоэлект-рр!ческое молчание. (При использовании остальных неингаляционных анестетиков такой степени депрессии ЭЭГ добиться невозможно.) При введении опиатов развивается монофазная дозозависи-мая депрессия ЭЭГ. Кетамин приводит к необычной активации, состоящей из ритмической высокоамплитудной 0-активности, которая сменяется чрезвычайно высокоамплитудной 6-активнос-тыо и низкоамплитудной (3-активностью.
Вызванные потенциалы
С помощью соматосенсорных вызванных потенциалов (ССВП) определяют состояние задних столбов спинного мозга и сенсорных областей коры; мониторинг ССВП показан при удалении опухолей спинного мозга, остеосинтезе позвоночника, каротидной эндартерэктомии и при операциях на аорте. Акустические стволовые вызванные потенциалы (АСВП) позволяют оценить целостность VIII пары черепных нервов и слуховых проводящих путей моста мозга; мониторинг АСВП применяют при операциях на задней черепной ямке. Мониторинг зрительных вызванных потенциалов (ЗВП) используют для оценки состояния зрительного нерва и верхних отделов ствола мозга при удалении больших опухолей гипофиза.
Интерпретировать результаты мониторинга ВП сложнее, чем ЭЭГ. После каждого стимула возникает период латентности, который может быть коротким, промежуточным или длительным. Ис-
точником коротколатентных ВП служит ствол мозга или стимулируемый нерв, промежуточно- и длительнолатентных ВП — кора. Как правило, ko-ротколатентные потенциалы меньше подвержены действию анестетиков, в то время как на длитель-нолатентные потенциалы влияют даже субанестетические дозы этих препаратов. Следовательно, для интраоперационного мониторинга следует использовать только коротколатентные и промежу-точнолатентные ВП. ЗВП чрезвычайно подвержены влиянию анестетиков, в то время как АСВП более устойчивы к их действию.
Ингаляционные анестетики
Ингаляционные анестетики вызывают мощное до-зозависимое уменьшение амплитуды и увеличение латентности ВП. Чтобы снизить это влияние, некоторые авторы предлагают ограничить дозу изофлюрана и энфлюрана 0,5 МАК, а галотана — 1 МАК. Закись азота уменьшает амплитуду, но не увеличивает латентность.
Неингаляционные анестетики
Неингаляционные анестетики в клинических дозах оказывают значительно меньшее влияние на ВП, чем ингаляционные, но в высоких дозах и они снижают амплитуду и увеличивают латентность. Барбитураты даже в дозах, угнетающих биоэлектрическую активность мозга до изолинии на ЭЭГ, редко подавляют BII. Этомидат увеличивает латентность ССВП, но повышает амплитуду. Хотя большинство опиоидов вызывают дозозависимое увеличение латентности ССВП и варьирующее по величине снижение амплитуды, мепередин может увеличить амплитуду. Кетамин также увеличивает амплитуду ССВП.
Случай из практики: послеоперационная гемиплегия
Мужчине в возрасте 62 лет была проведена операция по удалению злокачественной опухоли слюнной железы и радикальному удалению клетчатки шеи справа. Для введения в анестезию использовали этомидат, для поддержания — ингаляцию энфлюрана и закисно-кислородной смеси с FiO2 0,7. Опухоль прорастала во влагалище сонной артерии, и при выделении внутренняя сонная артерия была повреждена. С целью остановки кровотечения на внутреннюю сонную артерию наложили зажим, после чего дефект закрыли трансплантатом.
Как головной мозг снабжается кровью?
Две внутренние сонные и две позвоночные артерии практически полностью обеспечивают кровоснабжение головного мозга (рис. 25-7). Внутренняя сонная артерия начинается от бифуркации
общей сонной артерии на шее, идет вверх и входит в полость черепа через височную кость. Позвоночная артерия — это одна из ветвей подключичной артерии, она идет вверх через поперечные отростки шейных позвонков (начиная с шестого) и входит в полость черепа через большое затылочное
Рис. 25-7. Кровоснабжение головного мозга
отверстие. Анастамозы между ветвями одноименных левых и правых артерий, а также между системами внутренней сонной и позвоночной артерий формируют замкнутый артериальный круг на основании мозга (виллизиев круг). Эти анастамозы обеспечивают коллатеральный кровоток и защищают мозг от ишемии при окклюзии артерий, про-ксимальных по отношению к виллизиеву кругу.
Существуют дополнительные коллатерали между ветвями внутренней сонной и наружной сонной артерий. Хотя у внутренней сонной артерии нет крупных внечерепных ветвей, глазная артерия (одна из ее ветвей) образует в глазнице анастомоз с лицевой артерией (ветвью наружной сонной артерии). Сообщалось, что у некоторых больных перевязка обеих внутренних сонных артерий не влекла за собой неврологических последствий.
Какими анатомическими особенностями может быть вызван полушарный инфаркт в данном клиническом случае?
Главные артерии-анастомозы виллизиева круга (передняя и задняя соединительная артерии) не всегда хорошо развиты. Калибр этих артерий чрезвычайно изменчив, и одна или обе задние соединительные артерии могут отсутствовать. Более того, частота выраженного атеросклеротического стеноза магистральных артерий (внутренней сонной и позвоночной) повышается с возрастом и у больных 60-70 лет составляет 6-8 %. В то время как в обычных условиях тяжелый стеноз или даже полная окклюзия сосуда могут никак не проявляться, при снижении перфузии наступает ишемия дистальнее места стеноза и возникает нарушение коллатерального кровотока в отдаленных участках мозга.
Когда хирург накладывает зажим на правую внутреннюю сонную артерию, то кровоток в правой передней и средней мозговой артериях зависит от анастомозов системы правой внутренней сонной артерии (1) с системой левой внутренней сонной артерии через переднюю соединительную артерию; (2) с вертебро-базилярной системой через правую заднюю соединительную артерию; (3) с системой правой наружной сонной артерии в правой глазнице. Дефекты развития или приобретенные стенозы этих сосудов повышают риск ишемичес-кого инсульта.
Какие меры предпринимают для защиты мозга от ишемии?
Использование временного шунта высокоэффективно, но само но себе может вызвать осложнения (гл. 21). Кроме того, установка шунта в рассматри-
ваемом случае может быть технически затруднена; не исключено также, что хирург не владеет этой методикой.
Регулировка АД, PaCO2 и PaO2, подбор анесте-тиков способны улучшить состояние больного. Гипервентиляция противопоказана, потому что гигю-капния вызывает сужение сосудов головного мозга и уменьшает коллатеральный кровоток. Гипер-капния нежелательна потому, что она приводит к феномену обкрадывания мозгового кровотока. Следовательно, целесообразным является поддержание нормального или немного повышенного уровня PaCO2.
Необходимо прекратить ингаляцию закиси азота и перейти на чистый кислород. Хотя количество растворенного в крови кислорода значительно меньше, чем связанного с гемоглобином (гл. 22), его теоретическр! может быть достаточно для улучшения MK и уменьшения зоны инфаркта мозга.
Поскольку ингаляционные анестетики нарушают ауторегуляцию мозгового кровообращения (рис. 25-6) и MK зависит от АД, требуется поддерживать АД на верхней границе нормы (АДсист — 140-150 мм рт. ст.).
Целесообразно перейти с энфлюрана на изо-флюран. В эквивалентных клинических дозах изофлюран вызывает меньшую депрессию кровообращения и в большей степени уменьшает метаболизм мозга.
Наконец, для защиты мозга от ишемии можно использовать умеренную гипотермию и тиопен-тал. Дозу тиопентала считают достаточной при появлении изолинии на ЭЭГ. Если ЭЭГ-мониторинг не проводится (как в данном случае), то эмпирическая общая доза тиопентала составляет 500-1500 мг. Для предотвращения артериальной гипотонии тиопентал вводят дробно (по 50 мг).
Избранная литература
Cottrell J. E., Smith D. S. Anesthesia and Neurosur-gery, 3rd ed. Mosby Year Book, 1994.
Cucchiara R. F., Michenfelder J. D. Clinical Neuro-anesthesia. Churchill Livingstone, 1990.
Frost E. A. M. Clinical Anesthesia in Neurosurgery, 2nd ed. Butterworths, 1991.
Sperry R. J., Stirt J. A., Stone D. J. Manual of Neuro-anesthesia. B. C. Decker, 1989.
Walters F. J. M., Ingram G. S., Jenkinson J. L. Anesthesia and Intensive Care for the Neurosurgical Patient. Blackwell, 1994.
Weinstein P., Faden A. Protection of the Brain From Ischemia. Williams & Wilkins, 1990.