Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

32_all

.pdf
Скачиваний:
7
Добавлен:
03.06.2015
Размер:
390.78 Кб
Скачать

Вычисление интеграла по вещественной оси с помощью вычетов

 

 

 

 

 

 

 

1

2003/2004

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

6i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

 

2 iz

 

 

 

 

 

Пусть

 

- регулярная

ветвь многозначной

функции Ln

 

 

 

 

в плоскости

с

разрезом по

кривой

 

 

z

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3π

[2i,i] такая,

что Im h()=

 

3π

 

 

Найти h(0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ =

z :

z

=

1, 0 arg z

 

 

 

 

 

.

и

вычислить

интеграл

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

 

 

 

 

 

 

J =

 

 

 

 

 

 

 

 

dz .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 sin

3

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Шабунин, Сидоров стр. 81 – 119 (пример 8 стр. 108-110, пример 10 стр. 111-113, пример 11 стр. 113-116), Половинкинн стр. 108 –

 

115, пример 3 стр. 104-105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c Прежде всего следует проверить,

 

что в

 

заданной области действительно существуют регулярные

ветви функции

 

 

 

2 iz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ln

 

 

 

1. Эта функция допускает выделение регулярных ветвей в области G=C\ γ , что легко проверяется2.

 

 

 

 

 

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3π

 

 

 

 

 

 

 

dВыберем теперь регулярную ветвь корня, которая удовлетворяет условию Im h()=

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 iz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

3π

 

 

 

 

 

+i(ϕ01 ϕ02

 

γ arg(2 iz)γ arg(z 1)+ 2πl) Im h()=ϕ01 ϕ02

 

 

.

 

h(z) = ln

 

+

+ 2πl =

 

z 1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

iz

 

 

3π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)= ln

 

 

 

 

+i

 

 

+

 

 

γ arg(2 iz)

γ arg(z 1)

-

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

z 1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

регулярная ветвь, соответствующая вышеприведенному условию Im h()=

 

3π

.

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(0)

 

 

2 i0

 

3π

 

π

 

 

 

 

 

 

ln 2 +i3π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

= ln

 

 

 

 

+i

 

 

+

 

 

(π) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fНаходим особые точки

f (z)=

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin 3

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Особыми точками являются:

z = ∞

- НОТ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

особые точки числителя: ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

нули знаменателя: z = πk , k = 0, ±1, ± 2,... - П3 (полюсы 3-го порядка)3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin 3 πk = 0 , (sin 3 z)

 

 

= 3sin 2 z cos z

 

= 0 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sin 3 z)

 

 

 

 

 

z=πk

 

 

 

 

 

z=πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (3sin 2 z cos z)

 

= (6sin z cos2 z 3sin 3 z)

 

 

= 0 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=πk

 

 

z=πk

 

 

 

 

 

 

 

z=πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Ln

 

2 iz

= Ln(2 iz)Ln(z 1) = ln

 

2 iz

 

+i(ϕ01 +

γ arg(2 iz)+ 2πk1 )ln

 

z 1

 

i(ϕ02 + γ arg(z 1)+ 2πk2 )

 

 

 

 

 

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ln

2 iz

+i(ϕ01 ϕ02 + γ arg(2 iz)

γ arg(z 1)+ 2πl)

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Теорема 2(§16П) Пусть функция f в области G регулярна, прчем f (z)0 , z G . Чтобы в области G существовали ветви

регулярной функции {n

f (z)}, необходимо и достаточно, чтобы для любого замкнутого кусочно-гладкого контура γ° G

нашлось целое число k °

такое, что ° arg f (z)= (2πn)k ° .

 

 

 

 

 

 

 

 

 

y

γ

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

3

Определение. Изолированная особая точка a

 

функции

f : B ρ (a)→ C называется полюсом, если существует предел

C

lim f (z)= ∞.

za

Вычисление интеграла по вещественной оси с помощью вычетов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sin 3 z)'''

 

z=πk

= (6sin z cos2 z 3sin 3 z)

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6 cos3 z 12 sin 2 z cos z 9 sin 2 z cos z)

 

 

 

= (1)k 6 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

особые точки знаменателя: .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Внутри контура γ = z

:

 

z

 

 

=1, 0 arg z

 

3π

 

 

[

2i,i] находится:

z = 0 - П3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g Интеграл J =

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dz , можно вычислить по формуле J = 2πi res

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

=

1 sin

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=0

sin

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

1 d 2

h(z)

 

h Точка z = 0 - П3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(полюс 3-го порядка), поэтому вычет5 в этой точке равен res

 

 

 

 

 

 

 

= lim

 

 

 

 

 

 

 

z 3

 

.

 

sin 3

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=0

 

z0

(3 1)! dz 2

sin 3 z

 

Кроме того,

res

 

 

 

h(z)

= c1

6, где c1

 

- коэффициент разложения функции

 

 

 

h(z)

 

в ряд Лорана с центром в конечной

 

 

 

 

 

 

 

 

 

 

 

 

 

sin 3 z

 

 

z=0 sin 3 z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

точке z = 0 при

 

 

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) iz

 

 

 

 

(−1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 iz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

k

 

 

 

 

 

h(z) = Ln

 

 

 

 

 

 

 

 

 

 

= Ln(

2)+ Ln 1

 

 

 

 

Ln(1 z)7 = Ln(2)+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(z)

 

+i2πk 8.

 

 

z 1

 

 

 

 

2

 

 

k

 

 

 

2

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

1) iz k

(1)

(z)

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Т.к. h(0) = ln 2 + i3π , то h(z) = ln 2 +i3π +

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

2

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ln 2 +i3π

iz

 

1

iz

2

1

iz 3

+ z +

 

z

2

 

 

+

 

z 3

o(z

3

)=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

2

 

 

3

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

1

 

 

1

 

2

 

 

 

1

 

 

 

 

 

 

 

i

 

 

3

 

+ o(z

3

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ln 2 +i3π

+

1

 

 

 

z +

 

1 +

 

 

z

 

+

 

 

 

 

1 +

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

4

 

 

3

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Теорема (Коши о вычетах). Пусть дана область G

C

с кусочно-гладкой положительно ориентированной границей Γ.

Пусть функция f определена и регулярна на

G всюду, за исключением конечного числа изолированных особых точек

a1 , a2 , K, an G (при этом имеется в виду,

что, если G , то ∞ = an ) и пусть к тому же функция f непрерывно

продолжима на границу области G . Тогда справедлива формула Γ

n

 

 

 

 

 

f (z)dz = 2πires f .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1 ak

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

> 0 . Пусть γr ={z :

 

 

 

= r}-

5

Определение. Пусть изолированная особая точка a

C

функции

f : B ρ (a)→ C , ρ

z a

положительно ориентированная окружность, причем 0 < r < ρ . Тогда вычетом функции

f в точке a называется число

res f

=

1

γ

f (z)dz .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

6

res f

= c1 , где c1 - коэффициент разложения функции

f в ряд Лорана с центром в конечной точке a при

 

.

 

 

 

 

a

 

 

 

 

 

 

 

 

 

iz

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

Многозначные функции Ln(2), Ln 1

 

и Ln(1 z) также имеют регулярные ветви.

 

 

 

 

 

 

 

 

 

 

Половинкин §9 пример 4: h (z)= ln

 

2

 

 

 

z (π,π).

 

 

 

 

 

8

z

+i arg

гл

z , arg

гл

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

n

, z B1(0).

 

 

 

 

 

 

 

 

 

 

 

 

 

h0 (1 + z)= (1)n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычисление интеграла по вещественной оси с помощью вычетов

 

 

 

 

 

 

 

 

 

 

 

3

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1 +3

z 2

+ o(z 3 )

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

6

 

 

 

 

 

=

+

 

+ o(1)

 

 

 

sin 3 z

 

 

 

z3

 

 

4 3

 

3

 

 

 

z 2

 

 

 

 

3

3

 

 

 

 

z3

 

 

 

 

 

 

z 3

2z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

3!

 

+ o(z )

 

 

 

 

1

6

 

+ o(z )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

Откуда

получаем,

 

что коэффициент

 

c1

 

при

 

1

 

 

равен

 

c1 =

5

+

 

1

 

(ln 2 +i3π), следовательно res

=

 

 

 

 

z

 

8

 

2

 

sin 3 z

 

5 + ln 2 +i3π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(z)

 

 

 

 

 

 

5

 

ln 2 +i3π

 

 

 

2

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h Окончательно

 

J =

 

 

 

 

 

 

 

 

= −3π

 

+iπ

 

 

 

+ ln 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πi res

 

 

 

 

 

=

2πi

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

sin 3 z

8

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=0