Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lektsii_1 / модуль2 / Лекция 2.2.doc
Скачиваний:
71
Добавлен:
02.06.2015
Размер:
340.48 Кб
Скачать

Гипербола

Гиперболой называется геометрическое место точек плоскости, для каждой из которых абсолютная величина разности расстояний до двух фиксированных точек той же плоскости, называемых фокусами гиперболы, есть величина постоянная.

Так же, как и в случае эллипса, для получения уравнения гиперболы выберем подходящую систему координат. Начало координат расположим на середине отрезка между фокусами, ось направим вдоль этого отрезка, а ось ординат - перпендикулярно к нему.

Пусть расстояние между фокусами и гиперболы равно , а абсолютная величина разности расстояний от точки гиперболы до фокусов равна . - текущая точка гиперболы (рис. 5).

Рис.5.

Так как разность двух сторон треугольника меньше третьей стороны, то , то есть , . По условию, фокусы , .

По определению гиперболы

Это уравнение запишем в виде

Обе части возведем в квадрат:

После приведения подобных членов и деления на 4, приходим к равенству

Опять обе части возведем в квадрат:

Раскрывая скобку и приводя подобные члены, получим

С учетом того, что уравнение принимает вид

Разделим обе части уравнения на и получим уравнение  (4)

Уравнение (4) называется каноническим уравнением гиперболы.

Гипербола обладает двумя взаимно перпендикулярными осями симметрии, на одной из которых лежат фокусы гиперболы, и центром симметрии. Если гипербола задана каноническим уравнением, то ее осями симметрии служат координатные оси Ox и , а начало координат - центр симметрии гиперболы.

Проведем построение гиперболы, заданной уравнением (4). Заметим, что из-за симметрии достаточно построить кривую только в первом координатном угле. Выразим из канонического уравнения y как функцию х, при условии, что ,

и построим график этой функции.

Область определения – интервал , , функция монотонно растет. Производная

существует во всей области определения, кроме точки. Следовательно, график - гладкая кривая (без углов). Вторая производная

во всех точках интервала отрицательна, следовательно, график - выпуклый вверх.

Проверим график на наличие асимптоты при . Пусть асимптота имеет уравнение . Тогда по правилам математического анализа

Выражение под знаком предела домножим и разделим на . Получим

Итак, график функции имеет асимптоту . Из симметрии гиперболы следует, что - тоже асимптота. (рис. 6).

Рис.6.График функции

Окончательно, используя симметрию гиперболы, получаем кривую рисунка 7.

Рис.6.Гипербола

Точки пересечения гиперболы, заданной каноническим уравнением (4) с осью называются вершинами гиперболы, отрезок между ними называется действительной осью гиперболы. Отрезок оси ординат между точками (0;-b) и (0; b) называется мнимой осью. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Начало координат называется ее центром. Величина называется эксцентриситетом гиперболы.

Из равенства следует, что у гиперболы . Эксцентриситет характеризует угол между асимптотами, чем ближе к 1, тем меньше этот угол.????

        Замечание 12.4   В отличие от эллипса в каноническом уравнении гиперболы соотношение между величинами и может быть произвольным. В частности, при мы получим равностороннюю гиперболу, известную из школьного курса математики. Ее уравнение имеет знакомый вид , если взять , а оси и направить по биссектрисам четвертого и первого координатных углов (рис. 7).

Рис.7.Равносторонняя гипербола

Для отражения на рисунке качественных характеристик гиперболы достаточно определить ее вершины, нарисовать асимптоты и нарисовать гладкую кривую, проходящую через вершины, приближающуюся к асимптотам и похожую на кривую рисунка 7.

Пример 2.4   Постройте гиперболу , найдите ее фокусы и эксцентриситет.

Решение. Разделим обе части уравнения на 4. Получим каноническое уравнение

, . Проводим асимптоты и строим гиперболу (рис. 8).

Рис.8.Гипербола

Из формулы получим .

Тогда фокусы - , ,

Пример 12.5 Постройте гиперболу . Найдите ее фокусы и эксцентриситет.

Решение. Преобразуем уравнение к виду

Данное уравнение не является каноническим уравнением гиперболы, так как знаки перед и противоположны знакам в каноническом уравнении. Однако, если переобозначить переменные , , то в новых переменных получим каноническое уравнение

Действительная ось этой гиперболы лежит на оси , то есть на оси исходной системы координат, асимптоты имеют уравнение , то есть уравнение в исходных координатах. Действительная полуось равна 5, мнимая -- 2. В соответствии с этими данными проводим построение (рис. 12.14).

Рис.9.Гипербола с уравнением

, , фокусы лежат на действительной оси - , , где координаты указаны в исходной системе координат.

Соседние файлы в папке модуль2