Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника_АЭУ / САЭУ Конспект лекций / 01 Общие сведения об АЭУ.doc
Скачиваний:
296
Добавлен:
01.06.2015
Размер:
406.53 Кб
Скачать

1.3.3. Коэффициент усиления

Коэффициент усиления или коэффициент передачи - это отношение выходного сигнала к входному. Используют различные варианты коэффициентов передачи. Это коэффициент передачи по напряжению, который определяется отношением амплитудных или действующих значений выходного и входного напряжений (рис. 1.1, а): Кu=Uвых/Uвх. Он определяется относительно установившегося гармонического входного сигнала.

Достаточно часто используется коэффициентом сквозной передачи или коэффициентом передачи ЭДС. Относительно этого коэффициента из рис. 1.1, а следует, что:

(1.1)

где Квх=Zвх/(Zc+Zвх) - коэффициент передачи (в комплексной форме) входной цепи, состоящей из входного сопротивления Zвх и внутреннего сопротивления эквивалентного генератора входного сигнала Zc. Очевидно, что с повышением входного сопротивления увеличивается Квх, а значит, и Кскв.

Коэффициентом усиления тока определяется соотношением:

Ki = Iвых/Iвх (1.2)

Он используется реже, так как для измерения токов требуется осуществлять разрыв цепей, что трудоемко.

Иногда используют также понятия сопротивления передачи Zп = Uвых/Iвх и проводимость передачи Yп=Iвых/Uвх.

Отношение мощности усиленного колебания в нагрузке к мощности, передаваемой на вход, называется коэффициентом усиления мощности

Крнвх. Все три основных коэффициента усиления (по току, напряжению и мощности) связаны между собой очевидными соотношениями:

Кр = Ki*KU, Ki=Ku*Zвх/Zн.

Для сравнения мощностей двух колебаний была введена логарифмическая величина БЕЛ. Она названа по имени изобретателя телефона А. Белла. Коэффициент усиления мощности обычно выражают в более мелких единицах - децибелах: Кр, дБ = 10 IgKp.

Если мощность Рн и Рвх выделяются на одинаковых сопротивлениях (Rн=Rвx=R), то их отношение в децибелах можно выразить через отношение напряжений:

(1.3)

Это соотношение используется для выражения в децибелах коэффициента усиления напряжения даже при RнRвх ,хотя это и не корректно. В данном случае записывают КU, дБ = 20 IgKU. Для тока это будет Кi,дБ = 20lnKi. Логарифмические единицы удобны тем, что позволяют перемножение коэффициентов усиления заменить сложением.

1.3.4. Амплитудно-частотная и фазочастотная характеристики

Коэффициент усиления по напряжению в комплексной форме имеет вид .Его модуль , зависящий от частоты, называетсяамплитудно-частотной характеристикой (АЧХ) усилителя (рис. 1.4., а). На рис. 1.4. по горизонтали отложена угловая частота  = 2f. Для АЧХ характерно наличие области средних частот, в которой К почти не зависит от частоты и обозначается Ко (номинальный коэффициент усиления). По вертикальной оси чаще всего откладывается относительное (нормированное) усиление М = К/Ко, т.е. коэффициент усиления, отнесенный к коэффициенту усиления на средних частотах (нормированная АЧХ).

Рис. 1.4.

На нижних и верхних частотах АЧХ обычно спадает. Частоты, на которых нормированное усиление уменьшается до условного уровня отсчета d, называются граничными частотами усиления: fн и fв. Типовым (стандартным) уровнем отсчета считается значение d = 1/=0,707. Частоты от fн до fв, как отмечено ранее, называют полосой пропускания усилителя.

В усилителе не все спектральные составляющие сложного колебания усиливаются в одинаковое число раз. Это приводит к искажению формы сигнала (амплитудно-частотные или частотные искажения). Искажения характеризуются неравномерностью АЧХ (выражается в децибелах: 20lgM и указывается в ТУ на аппаратуру, М=К/Ко). Неравномерность нормированной АЧХ может характеризуется спадом характеристики (f) = M(f) – 1 при M(f)<l или подъемом при (M(f)>l.

В звуковых сигналах частотные искажения воспринимаются на слух как изменения тембра (высоты тона). В усилителях звуковых частот допускается спад величины М не более чем на 3дБ (в 1,41 раза), а в усилителях измерительной техники  не более чем на 0,1дБ.

Зависимость от частоты фазового сдвига, вносимого усилителем, характеризуют фазо-частотной характеристикой (ФЧХ) (рис. 1.4, б). Из теории цепей известно, что если ФЧХ четырехполюсника не является прямой линией, то время прохождения через четырехполюсник различных спектральных составляющих сложного колебания различно. Это приводит к

искажению сигнала, которое характеризуется изменением формы сигнала (фазочастотные искажения). На практике ФЧХ используется реже, чем АЧХ, ввиду меньшей значимости и сравнительной сложности измерения фазовых сдвигов. Однако применительно, например, к волоконно-оптическим линиям связи, подобные сдвиги различных спектральных составляющих сигнала могут привести к размыванию импульса сигнала и соответственно к потере информации. Применительно к проводным протяженным линиям связи можно также отменить существование данной проблемы, поскольку скорость распространения спектральных составляющих различных частот различна (рис. 1.5).

Рис. 1.5.

Частотные и фазовые искажения называются линейными, если создаются емкостями и индуктивностями схемы, являющимися линейными элементами. Они искажают лишь форму сложного колебания, изменяются соотношения амплитуд и фаз между отдельными спектральными составляющими, а форму гармонического (синусоидального) колебания не изменяют. Соответственно это не приводит к появлению новых спектральных составляющих в спектре сигнала.

Масштаб для АЧХ и ФЧХ по оси частот обычно берут логарифмический. Это позволяет растянуть график в области низких частот и сжать в области высоких частот, что обеспечивает большую наглядность.