
- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
1.7. Основные формулы комбинаторики
При нахождении вероятностей в схеме классического определения широко используется комбинаторика, поэтому напомним наиболее употребительные определения и формулы для вычисления.
Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества.
Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок
Рn = n!
Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.
Пример. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?
Решение. Искомое число трехзначных чисел Р3 = 3! = 123 = 6.
Размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений
.
Пример. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?
Решение.
Искомое число сигналов
.
Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний
.
Пример. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?
Решение.
Искомое число способов
.
Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством
Замечание. Выше предполагалось, что все n элементов различны. Если же некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам. Например, если среди n элементов есть n1 элементов одного вида, n2 элементов другого вида и т. д., то число перестановок с повторениями
,
где n1 + n2 + ... = n.
При решении задач комбинаторики используют следующие правила:
1. Правило суммы. Если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.
2. Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами.
Приведем несколько примеров непосредственного вычисления вероятностей.
Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.
Решение. Обозначим через А событие – набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
Р(А)=1/10.
Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
Решение.
Обозначим через В
событие – набраны две нужные цифры.
Всего можно набрать столько различных
цифр, сколько может быть составлено
размещений из десяти цифр по две, т.е.
.
Таким образом, общее число возможных
элементарных исходов равно 90. Эти исходы
несовместны, равновозможны и образуют
полную группу. Благоприятствует событию
В
лишь один исход. Искомая вероятность
равна отношению числа исходов,
благоприятствующих событию, к числу
всех элементарных исходов:
Р(В)=1/90.
Пример 3. Указать ошибку «решения» задачи: «Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие А)».
Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию А благоприятствует один исход; общее число исходов равно двум. Следовательно, искомая вероятность
Р(А) = 1/2.
Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.
Правильное решение. Общее число равновозможных исходов испытания равно 66 = 36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность
Р(А) = 3/36 = 1/12.
Пример 4. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.
Решение.
Общее число возможных элементарных
исходов испытания равно числу способов,
которыми можно извлечь 6 деталей из 10,
т. е. числу сочетаний из 10 элементов но
6 элементов ().
Определим
число исходов, благоприятствующих
интересующему нас событию А
(среди шести взятых деталей 4 стандартных).
Четыре стандартные детали можно взять
на семи стандартных деталей
способами; при этом остальные 6 – 4 = 2
детали должны быть нестандартными;
взять же 2 нестандартные детали из 10 –
7 = 3 нестандартных деталей можно
способами. Следовательно, число
благоприятствующих исходов равно
.
Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов: