- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
12.5. Показательный закон надежности
Часто
длительность времени безотказной работы
элемента имеет показательное распределение,
функция распределения которого
.
Следовательно, в силу соотношения (12.4)
функция надежности в случае показательного
распределения времени безотказной
работы элемента имеет вид
.
Показательным законом надежности называют функцию надежности, определяемую равенством
. (12.5)
где – интенсивность отказов.
Как следует из определения функции надежности, эта формула позволяет найти вероятность безотказной работы элемента на интервале времени длительностью t, если время безотказной работы имеет показательное распределение.
Пример.
Время безотказной работы элемента
распределено по показательному закону
приt
0
(t
– время). Найти вероятность того, что
элемент проработает безотказно 100 ч.
Решение.
По условию, постоянная интенсивность
отказов
= 0,02. Воспользуемся формулой (12.5):
.
Искомая вероятность того, что элемент
проработает безотказно 100 ч, приближенно
равна 0,14.
Замечание.
Если отказы элементов в случайные
моменты времени образуют простейший
поток, то вероятность того, что за время
длительностью t
не наступит ни одного отказа,
,
что согласуется с равенством (12.5),
поскольку
в обеих формулах имеет один и тот же
смысл (постоянная интенсивность отказов).
12.6. Характеристическое свойство показательного закона надежности
Показательный закон надежности весьма прост и удобен для решения задач, возникающих на практике. Очень многие формулы теории надежности значительно упрощаются. Объясняется это тем, что этот закон обладает следующим важным свойством: вероятность безотказной работы элемента на интервале времени длительностью t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t (при заданной интенсивности отказов ).
Для доказательства свойства введем обозначения событий:
А – безотказная работа элемента на интервале (0, t0) длительностью t0; В – безотказная работа на интервале (t0, t0 + t) длительностью t. Тогда АВ – безотказная работа на интервале (0, t0+ t) длительностью t0 + t.
Найдем вероятности этих событий по формуле (12.5):

Найдем условную вероятность того, что элемент будет работать безотказно на интервале (t0, t0 + t) при условии, что он уже проработал безотказно на предшествующем интервале (0, t0):
.
Полученная формула не содержит t0, а содержит только t. Это и означает, что время работы на предшествующем интервале не сказывается на величине вероятности безотказной работы на последующем интервале, а зависит только от длины последующего интервала, что и требовалось доказать.
Полученный
результат можно сформулировать несколько
иначе. Сравнив вероятности
и
,
заключаем: условная вероятность
безотказной работы элемента на интервале
длительностьюt,
вычисленная в предположении, что элемент
проработал безотказно на предшествующем
интервале, равна безусловной вероятности.
Итак, в случае показательного закона надежности безотказная работа элемента «в прошлом» не сказывается на величине вероятности его безотказной работы «в ближайшем будущем».
Замечание. Можно доказать, что рассматриваемым свойством обладает только показательное распределение. Поэтому если на практике изучаемая случайная величина этим свойством обладает, то она распределена по показательному закону. Например, при допущении, что метеориты распределены равномерно в пространстве и во времени, вероятность попадания метеорита в космический корабль не зависит от того, попадали или не попадали метеориты в корабль до начала рассматриваемого интервала времени. Следовательно, случайные моменты времени попадания метеоритов в космический корабль распределены по показательному закону.
