Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii.doc
Скачиваний:
420
Добавлен:
01.06.2015
Размер:
2.95 Mб
Скачать

12.5. Показательный закон надежности

Часто длительность времени безотказной работы элемента имеет показательное распределение, функция распределения которого . Следовательно, в силу соотношения (12.4) функция надежности в случае показательного распределения времени безотказной работы элемента имеет вид

.

Показательным законом надежности называют функцию надежности, определяемую равенством

. (12.5)

где  – интенсивность отказов.

Как следует из определения функции надежности, эта формула позволяет найти вероятность безотказной работы элемента на интервале времени длительностью t, если время безотказной работы имеет показательное распределение.

Пример. Время безотказной работы элемента распределено по показательному закону приt 0 (t – время). Найти вероятность того, что элемент проработает безотказно 100 ч.

Решение. По условию, постоянная интенсивность отказов  = 0,02. Воспользуемся формулой (12.5): . Искомая вероятность того, что элемент проработает безотказно 100 ч, приближенно равна 0,14.

Замечание. Если отказы элементов в случайные моменты времени образуют простейший поток, то вероятность того, что за время длительностью t не наступит ни одного отказа, , что согласуется с равенством (12.5), поскольку в обеих формулах имеет один и тот же смысл (постоянная интенсивность отказов).

12.6. Характеристическое свойство показательного закона надежности

Показательный закон надежности весьма прост и удобен для решения задач, возникающих на практике. Очень многие формулы теории надежности значительно упрощаются. Объясняется это тем, что этот закон обладает следующим важным свойством: вероятность безотказной работы элемента на интервале времени длительностью t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t (при заданной интенсивности отказов ).

Для доказательства свойства введем обозначения событий:

А – безотказная работа элемента на интервале (0, t0) длительностью t0; В – безотказная работа на интервале (t0, t0 + t) длительностью t. Тогда АВ – безотказная работа на интервале (0, t0+ t) длительностью t0 + t.

Найдем вероятности этих событий по формуле (12.5):

Найдем условную вероятность того, что элемент будет работать безотказно на интервале (t0, t0 + t) при условии, что он уже проработал безотказно на предшествующем интервале (0, t0):

.

Полученная формула не содержит t0, а содержит только t. Это и означает, что время работы на предшествующем интервале не сказывается на величине вероятности безотказной работы на последующем интервале, а зависит только от длины последующего интервала, что и требовалось доказать.

Полученный результат можно сформулировать несколько иначе. Сравнив вероятности и, заключаем: условная вероятность безотказной работы элемента на интервале длительностьюt, вычисленная в предположении, что элемент проработал безотказно на предшествующем интервале, равна безусловной вероятности.

Итак, в случае показательного закона надежности безотказная работа элемента «в прошлом» не сказывается на величине вероятности его безотказной работы «в ближайшем будущем».

Замечание. Можно доказать, что рассматриваемым свойством обладает только показательное распределение. Поэтому если на практике изучаемая случайная величина этим свойством обладает, то она распределена по показательному закону. Например, при допущении, что метеориты распределены равномерно в пространстве и во времени, вероятность попадания метеорита в космический корабль не зависит от того, попадали или не попадали метеориты в корабль до начала рассматриваемого интервала времени. Следовательно, случайные моменты времени попадания метеоритов в космический корабль распределены по показательному закону.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]