
- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
Найдем вероятность попадания в интервал (а, и) непрерывной случайной величины X, которая распределена по показательному закону, заданному функцией распределения
.
Используем
формулу (??)
.
Учитывая, что
,
,
получим
. (12.1)
Значения функции е–х находят по таблице.
Пример. Непрерывная случайная величина X распределена по показательному закону
.
Найти вероятность того, что в результате испытания X попадает в интервал (0,3, 1).
Решение. По условию, = 2. Воспользуемся формулой (12.1):
§ 3. Числовые характеристики показательного распределения
Пусть непрерывная случайная величина X распределена по показательному закону
.
Найдем математическое ожидание:
.
Интегрируя по частям, получим
. (12.2)
Таким образом, математическое ожидание показательного распределения равно обратной величине параметра X.
Найдем дисперсию:
.
Интегрируя по частям, получим
.
Следовательно,
.
Найдем среднее квадратическое отклонение,
для чего извлечем квадратный корень из
дисперсии:
. (12.3)
Сравнивая
(12.2) и (12.3), заключаем, что
,
т.е. математическое ожидание и среднее
квадратическое отклонение показательного
распределения равны между собой.
Пример. Непрерывная случайная величина X распределена по показательному закону
Найти математическое ожидание, среднее квадратическое отклонение и дисперсию X.
Решение.
По условию,
= 5. Следовательно,
;
.
Замечание
1. Пусть на практике изучается показательно
распределенная случайная величина,
причем параметр
неизвестен. Если математическое ожидание
также неизвестно, то находят его оценку
(приближенное значение), в качестве
которой принимают выборочную среднюю
.
Тогда приближенное значение параметра
находят с помощью равенства
.
Замечание 2. Допустим, имеются основания предположить, что изучаемая на практике случайная величина имеет показательное распределение. Для того чтсбы проверить эту гипотезу, находят оценки математического ожидания и среднего квадратического отклонения, т.е. находят выборочную среднюю и выборочное среднее квадратическое отклонение. Математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой, поэтому их оценки должны различаться незначительно. Если оценки окажутся близкими одна к другой, то данные наблюдений подтверждают гипотезу о показательном распределении изучаемой величины; если же оценки различаются существенно, то гипотезу следует отвергнуть.
Показательное распределение широко применяется в приложениях, в частности в теории надежности, одним из основных понятий которой является функция надежности.
12.4. Функция надежности
Будем называть элементом некоторое устройство независимо от того, «простое» оно или «сложное».
Пусть элемент начинает работать в момент времени t0=0, а по истечении времени длительностью t происходит отказ. Обозначим через Т непрерывную случайную величину – длительность времени безотказной работы элемента. Если элемент проработал безотказно (до наступления отказа) время, меньшее t, то, следовательно, за время длительностью t наступит отказ.
Таким образом, функция распределения F(t) = P(T < t) определяет вероятность отказа за время длительностью t. Следовательно, вероятность безотказной работы за это же время длительностью t, т.е. вероятность противоположного события Т > t, равна
. (12.4)
Функцией
надежности R(t)
называют функцию, определяющую вероятность
безотказной работы элемента за время
длительностью t:
.