
- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
8.4. Сущность теоремы Чебышева
Сущность
доказанной теоремы такова: хотя отдельные
независимые случайные величины могут
принимать значения, далекие от своих
математических ожиданий, среднее
арифметическое достаточно большого
числа случайных величин с большой
вероятностью принимает значения, близкие
к определенному постоянному числу, а
именно к числу
(или к числуа
в частном случае). Иными словами, отдельные
случайные величины могут иметь
значительный разброс, а их среднее
арифметическое рассеянно мало.
Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных величин, но можно предвидеть, какое значение примет их среднее арифметическое.
Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.
Теорема Чебышева справедлива не только для дискретных, но и для непрерывных случайных величин; она является ярким примером, подтверждающим справедливость учения диалектического материализма о связи между случайностью и необходимостью.
8.5. Значение теоремы Чебышева для практики
Приведем примеры применения теоремы Чебышева к решению практических задач.
Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифметическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос дает теорема Чебышева (ее частный случай).
Действительно, рассмотрим результаты каждого измерения как случайные величины X1, Х2, ..., Хn. К этим величинам можно применить теорему Чебышева, если: 1) они попарно независимы, 2) имеют одно и то же математическое ожидание, 3) дисперсии их равномерно ограничены.
Первое требование выполняется, если результат каждого измерения не зависит от результатов остальных. Второе требование выполняется, если измерения произведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру а. Третье требование выполняется, если прибор обеспечивает определенную точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их ограничено.
Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева: при достаточно большом n вероятность неравенства
как угодно близка к единице. Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое как угодно мало отличается от истинного значения измеряемой величины.
Итак, теорема Чебышева указывает условия, при которых описанный способ измерения может быть применен. Однако ошибочно думать, что, увеличивая число измерений, можно достичь сколь угодно большой точности. Дело в том, что сам прибор дает показания лишь с точностью ± ; поэтому каждый из результатов измерений, а следовательно, и их среднее арифметическое будут получены лишь с точностью, не превышающей точности прибора.
На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов. Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.
В качестве другого примера можно указать на определение качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравнительно со всей массой зерна, но само по себе оно достаточно велико. Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.