- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
5.5. Геометрическое распределение
Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна р (0< р < 1) и, следовательно, вероятность его непоявления q = 1 – р. Испытания заканчиваются, как только появится событие А. Таким образом, если событие А появилось в k-м испытании, то в предшествующих k – 1 испытаниях оно не появлялось.
Обозначим через X дискретную случайную величину – число испытаний, которые нужно провести до первого появления события А. Очевидно, возможными значениями X являются натуральные числа: x1 = 1, x2 =2, ...
Пусть в первых k – 1 испытаниях событие А не наступило, а в k-м испытании появилось. Вероятность этого «сложного события», по теореме умножения вероятностей независимых событий,
. (5.1)
Полагая k = 1, 2, ... в формуле (5.1), получим геометрическую прогрессию с первым членом р и знаменателем q (0 < q < 1):
. (5.2)
По этой причине распределение (5.1) называют геометрическим.
Легко убедиться, что ряд (5.2) сходится и сумма его равна единице. Действительно, сумма ряда (5.1)
.
Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель р = 0,6. Найти вероятность того, что попадание произойдет при третьем выстреле.
Решение. По условию, р = 0,6, q = 0,4, k = 3. Искомая вероятность по формуле (5.1)
.
5.6. Гипергеометрическое распределение
Прежде чем дать определение гипергеометрического распределения, рассмотрим задачу. Пусть в партии из N изделий имеется М стандартных (М < N). Из партии случайно отбирают n изделий (каждое изделие может быть извлечено с одинаковой вероятностью), причем отобранное изделие перед отбором следующего не возвращается в партию (поэтому формула Бернулли здесь неприменима). Обозначим через X случайную величину – число m стандартных изделий среди n отобранных. Очевидно, возможные значения X таковы: 0, 1, 2, ..., min(M, n).
Найдем вероятность того, что X = m, то есть что среди n отобранных изделий ровно m стандартных. Используем для этого классическое определение вероятности.
Общее
число возможных элементарных исходов
испытания равно числу способов, которыми
можно извлечь n
изделий из N
изделий, то есть числу сочетаний
.
Найдем
число исходов, благоприятствующих
событию Х
= m
(среди взятых n
изделий ровно m
стандартных); m
стандартных изделий можно извлечь из
М
стандартных изделий
способами; при этом остальныеn
– m
изделий должны быть нестандартными;
взять же n
– m
нестандартных изделий из N
– m
нестандартных изделий можно
способами. Следовательно, число
благоприятствующих исходов равно
(правило умножения).
Искомая вероятность равна отношению числа исходов, благоприятствующих событию Х = m, к числу всех элементарных исходов
. (5.3)
Формула (5.3) определяет распределение вероятностей, которое называют гипергеометрическим.
Учитывая, что m – случайная величина, заключаем, что гипергеометрическое распределение определяется тремя параметрами: N, М, n. Иногда в качестве параметров этого распределения рассматривают N, n и p = M/N, где р – вероятность того, что первое извлеченное изделие стандартное.
Заметим, что если n значительно меньше N (практически если n < 0,1N), то гипергеометрическое распределение дает вероятности, близкие к вероятностям, найденным по биномиальному закону.
Пример. Среди 50 изделий 20 окрашенных. Найти вероятность того, что среди наудачу извлеченных 5 изделий окажется ровно 3 окрашенных.
Решение. По условию, N = 50, М = 20, n = 5, m = 3. Искомая вероятность
.
