- •Теория вероятностей и математическая статистика Основные понятия теории вероятностей Рекомендуемая литература
- •1.1. Предмет теории вероятностей
- •1.2. Области применения теории вероятностей
- •1.3. Краткая историческая справка
- •1.4. Испытания и события. Виды событий
- •1.5. Алгебра событий
- •1.6. Классическое определение вероятности
- •1.7. Основные формулы комбинаторики
- •Лекция №2. Основные понятия и определения
- •2.1. Относительная частота. Устойчивость относительной частоты
- •2.2. Ограниченность классического определения вероятности. Статистическая вероятность
- •2.3. Геометрические вероятности
- •2.4. Теорема сложения вероятностей
- •2.5. Полная группа событий
- •2.6. Противоположные события
- •2.7. Принцип практической невозможности маловероятных событий
- •2.8. Произведение событий. Условная вероятность
- •2.9. Теорема умножения вероятностей
- •2.10. Независимые события. Теорема умножения для независимых событий
- •2.10. Вероятность появления хотя бы одного события
- •Лекция №3 следствия теорем сложения и умножения
- •3.1. Теорема сложения вероятностей совместных событий
- •3.2. Формула полной вероятности
- •3.3. Вероятность гипотез. Формулы Бейеса
- •4. Повторение испытаний
- •4.1. Формула Бернулли
- •4.2. Предельные теоремы в схеме Бернулли
- •4.3. Локальная и интегральная теоремы Муавра-Лапласа
- •4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •5. Случайные величины
- •5.1. Понятие случайной величины. Закон распределения случайной величины
- •5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
- •5.3. Биномиальное распределение
- •5.4. Распределение Пуассона
- •5.5. Геометрическое распределение
- •5.6. Гипергеометрическое распределение
- •6. Математическое ожидание дискретной случайной величины
- •6.1. Числовые характеристики дискретных случайных величин
- •6.2. Математическое ожидание дискретной случайной величины
- •6.3. Вероятностный смысл математического ожидания
- •6.4. Свойства математического ожидания
- •6.5. Математическое ожидание числа появлений события в независимых испытаниях
- •7. Дисперсия дискретной случайной величины
- •7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •7.2. Отклонение случайной величины от ее математического ожидания
- •7.3. Дисперсия дискретной случайной величины
- •7.4. Формула для вычисления дисперсии
- •7.5. Свойства дисперсии
- •7.6. Дисперсия числа появлений события в независимых испытаниях
- •7.7. Среднее квадратическое отклонение
- •7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •7.9. Одинаково распределенные взаимно независимые случайные величины
- •7.10. Начальные и центральные теоретические моменты
- •8. Закон больших чисел
- •8.1. Предварительные замечания
- •8.2. Неравенство Чебышева
- •8.3. Теорема Чебышева
- •8.4. Сущность теоремы Чебышева
- •8.5. Значение теоремы Чебышева для практики
- •8.6. Теорема Бернулли
- •Функция распределения вероятностей случайной величины
- •9.1. Определение функции распределения
- •9.2. Свойства функции распределения
- •9.3. График функции распределения
- •10. Плотность распределения вероятностей непрерывной случайной величины
- •10.1. Определение плотности распределения
- •10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •10.3. Закон равномерного распределения вероятностей
- •11. Нормальное распределение
- •11.1. Числовые характеристики непрерывных случайных величин
- •11.2. Нормальное распределение
- •11.3. Нормальная кривая
- •11.4. Влияние параметров нормального распределения на форму нормальной кривой
- •11.5. Вероятность попадания в заданный интервал нормальной случайной величины
- •11.6. Вычисление вероятности заданного отклонения
- •11.7. Правило трех сигм
- •11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •11.10. Функция одного случайного аргумента и ее распределение
- •11.11. Математическое ожидание функции одного случайного аргумента
- •11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •11.13. Распределение «хи квадрат»
- •11.14. Распределение Стьюдента
- •11.15. Распределение f Фишера – Снедекора
- •12. Показательное распределение
- •12.1. Определение показательного распределения
- •12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •12.4. Функция надежности
- •12.5. Показательный закон надежности
- •12.6. Характеристическое свойство показательного закона надежности
1.2. Области применения теории вероятностей
Методы теории вероятностей широко применяются в различных отраслях естествознания и техники:
в теории надежности,
теории массового обслуживания,
теоретической физике,
геодезии,
астрономии,
теории стрельбы,
теории ошибок наблюдений,
теории автоматического управления,
общей теории связи и во многих других теоретических и прикладных науках.
Теория вероятностей служит также для обоснования математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов, предупредительном и приемочном контроле качества продукции и для многих других целей.
В последние годы методы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.
1.3. Краткая историческая справка
Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI—XVII вв.).
Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654 – 1705). Доказанная им теорема, получившая впоследствии название «Закона больших чисел», была первым теоретическим обоснованием накопленных ранее фактов.
Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др. Новый, наиболее плодотворный период связан с именами П. Л. Чебышева (1821 – 1894) и его учеников А.А.Маркова (1856 – 1922) и А.М. Ляпунова (1857 – 1918). В этот период теория вероятностей становится стройной математической наукой. Ее последующее развитие обязано в первую очередь русским и советским математикам (С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Б.В. Гнеденко, Н. В. Смирнов и др.).
1.4. Испытания и события. Виды событий
Основными понятиями теории вероятностей являются понятие элементарного события и понятие пространства элементарных событий. Выше событие названо случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий S осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания.
Определение. Случайным событием называется всякий факт, который может произойти или не произойти в результате опыта.
При этом тот или иной результат опыта может быть получен с различной степенью возможности. То есть в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.
Определение. Пространством элементарных исходов Ω называется множество, содержащее все возможные результаты данного случайного эксперимента, из которых в эксперименте происходит ровно один. Элементы этого множества называют элементарными исходами и обозначают буквой ω («омега»).
Тогда событиями называют подмножества множества Ω. Говорят, что в результате эксперимента произошло событие A Ω, если в эксперименте произошел один из элементарных исходов, входящих в множество A.
Будем для простоты считать, что число элементарных событий конечно. Подмножество пространства элементарных событий называют случайным событием. Это событие в результате испытания может произойти или не произойти (выпадение трех очков при бросании игральной кости, звонок в данную минуту по телефону и т. д.).
Пример 1. Стрелок стреляет по мишени, разделенной на четыре области. Выстрел – это испытание. Попадание в определенную область мишени – событие.
Пример 2. В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета – событие.
В математической модели можно принять понятие события как первоначальное, которому не дается определения и которое характеризуется лишь своими свойствами. Исходя из реального смысла понятия события, можно определить различные виды событий.
Определение. Случайное событие называют достоверным, если оно заведомо произойдет (выпадение от одного до шести очков при бросании кости), и невозможным, если оно заведомо не может произойти в результате опыта (выпадение семи очков при бросании кости). При этом достоверное событие содержит все точки пространства элементарных событий, а невозможное событие не содержит ни одной точки этого пространства.
Определение. Два случайных события называют несовместными, если они не могут произойти одновременно при одном и том же исходе испытания. И вообще любое количество событий называются несовместными, если появление одного из них исключает появление других.
Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).
Другой пример – из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События «появилась стандартная деталь» и «появилась нестандартная деталь» – несовместные.
Определение. Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них.
Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет наибольший интерес, поскольку используется далее.
Пример. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: «выигрыш выпал на первый билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события образуют полную группу попарно несовместных событий.
Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.
Пример. Если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.
Определение. События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.
Пример. Появление «герба» и появление надписи при бросании монеты – равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.
Пример. Появление того или иного числа очков на брошенной игральной кости – равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.
В приведенном выше примере с шарами появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.
