
- •Политехнический институт Сибирского федерального университета электрические и электронные аппараты
- •Введение
- •1. Основы теории электрических аппаратов
- •1.1.Электрические и электронные аппараты как средства управления режимами работы, защиты и регулирования параметров электротехнических и электроэнергетических систем
- •1.1.1. Назначение и классификация электрических аппаратов
- •1.1.2. Требования, предъявляемые к электрическим аппаратам
- •1.2. Физические явления в электрических аппаратах и основы теории электрических аппаратов
- •1.2.1. Электродинамические силы в электрических аппаратах
- •1.2.2. Методы расчета электродинамических усилий и направления их действия
- •1.2.3. Расчет электродинамических усилий
- •1.2.4. Электродинамические усилия при переменном токе
- •1.2.5. Электродинамическая стойкость аппаратов. Механический резонанс
- •1.2.6. Тепловые процессы в электрических аппаратах
- •1.2.7. Источники теплоты в электрических аппаратах
- •1.2.8. Способы распространения теплоты в электрических аппаратах
- •1.2.9. Задачи теплового расчета
- •1.2.10. Режимы работы электрических аппаратов
- •1.2.11. Нагрев электрических аппаратов при различных режимах работы
- •1.2.12. Нагрев электрических аппаратов при коротком замыкании. Термическая стойкость аппарата
- •1.2.13. Контактные явления и классификация электрических контактов
- •1.2.14. Контактная поверхность и контактное сопротивление
- •1.2.15. Математическая модель электрических контактов
- •1.2.16. Влияние переходного сопротивления контактов на нагрев проводников. Сваривание электрических контактов
- •1.2.17. Износ контактов
- •1.2.18. Материалы для контактных соединений
- •1.2.19. Коммутация электрической цепи
- •1.2.20. Включение электрической цепи
- •1.2.21. Отключение электрической цепи контактными аппаратами
- •1.2.22. Электрическая дуга
- •1.2.23. Статическая вольтамперная характеристика электрической дуги постоянного тока
- •1.2.24. Динамическая вольтамперная характеристика электрической дуги постоянного тока
- •1.2.25. Условия гашения дуги постоянного тока
- •1.2.26. Условия гашения электрической дуги переменного тока
- •1.2.27. Электрическая дуга в магнитном поле
- •1.2.28. Способы воздействия на электрическую дугу в коммутационных аппаратах
- •1.3. Электромагниты
- •1.3.1. Электромагниты и их магнитные цепи
- •1.3.2.Методы расчета электромагнитов
- •1.3.3. Тяговые силы в электромагнитах
- •1.3.4. Согласование тяговой характеристики электромагнита с механической нагрузкой. Коэффициент запаса
- •1.3.5. Сила тяги электромагнита переменного тока
- •1.3.6. Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока
- •1.3.7. Устранение вибрации якоря электромагнита переменного тока
- •1.3.8. Время срабатывания и отключения электромагнита и способы изменения его быстродействия
- •2. Электромеханические аппараты управления, автоматики, распределения электрической энергии и релейной защиты.
- •2.1.Электромеханические реле
- •2.1.1. Реле управления
- •2.1.2. Электромагнитные реле тока и напряжения
- •2.1.3. Реле времени
- •2.1.4. Поляризованные реле
- •2.1.5. Электромагнитные реле на герконах
- •2.1.6. Тепловые реле
- •2.1.7. Индукционные реле
- •2.2.Электромеханические датчики
- •2.2.1. Электромеханические датчики и требования, предъявляемые к ним
- •2.2.2. Пассивные датчики
- •2.2.3. Активные датчики
- •2.3. Электромеханические исполнительные устройства
- •2.3.1. Электромеханические исполнительные устройства и их характеристики
- •2.3.2. Конструкции исполнительных устройств
- •2.4. Плавкие предохранители
- •2.4.1. Принцип действия и устройство предохранителей
- •2.4.2. Основные параметры предохранителей
- •2.4.3. Время срабатывания и ампер-секундная характеристика предохранителя
- •.2.4.4. Работа предохранителей при номинальном токе и токе короткого замыкания
- •2.4.5. Выбор предохранителей
- •2.5.Контакторы
- •2.5.1. Контакторы и их технические параметры
- •2.5.2. Устройство электромагнитных контакторов
- •2.5.3. Магнитные пускатели
- •2.5.4. Конструкции электромагнитных контакторов постоянного тока
- •2.5.5. Конструкции электромагнитных контакторов переменного тока
- •2.5.6. Жидкометаллические контакторы
- •2.5.7. Герметизированные контакторы
- •2.5.8. Синхронные контакторы
- •2.5.9. Гибридные контакторы
- •2.5.10. Расчет и выбор контакторов и пускателей
- •2.6. Автоматические воздушные выключатели низкого напряжения
- •2.6.1. Общие сведения
- •2.6.2. Принцип действия и основные узлы автоматических выключателей
- •2.6.3. Специальные типы автоматических выключателей
- •2.6.4. Выбор автоматического выключателя
- •2.7. Низковольтные комплектные устройства
- •2.7.1. Общие сведения о низковольтных комплектных устройствах
- •2.7.2. Режимы работы низковольтных комплектных устройств
- •2.7.3. Выбор габаритных размеров низковольтных комплектных устройств и особенности их монтажа
- •3. Аппараты высокого напряжения
- •3.1. Коммутационные аппараты высокого напряжения
- •3.1.1. Классификация аппаратов высокого напряжения и требования, предъявляемые к ним
- •3.1.2. Воздушные выключатели
- •3.1.3. Элегазовые выключатели
- •3.1.4. Масляные выключатели
- •3.1.5. Электромагнитные выключатели высокого напряжения
- •3.1.6. Вакуумные выключатели
- •3.1.7. Разъединители, отделители, короткозамыкатели
- •3.2.Измерительные трансформаторы высокого напряжения
- •3.2.1.Измерительные трансформаторы тока высокого напряжения
- •3.2.2. Трансформаторы напряжения
- •3.2.3. Защитные и токоограничивающие аппараты
- •3.3. Комплектные распределительные устройства высокого напряжения
- •3.3.1. Распределительные устройства закрытого и открытого типов
- •3.3.2. Комплектные распределительные устройства внутренней установки
- •3.3.3. Комплектные распределительные устройства наружной установки
- •3.3.4. Комплектные распределительные устройства с элегазовой изоляцией
- •4 Электронные и микропроцессорные аппараты
- •4.1 Общие сведения об электронных ключах и бездуговой коммутации
- •4.1.1 Электронные ключи
- •4.1.2 Статические и динамические режимы работы ключей
- •4.1.3 Область безопасной работы и защита ключей
- •4.2 Основные виды силовых электронных ключей
- •4.2.1 Силовые диоды
- •4.2.2 Защита силовых диодов
- •4.2.3 Основные типы силовых диодов
- •4.2.4 Силовые транзисторы
- •4.2.5 Тиристоры
- •4.2.6 Тиристор в цепи постоянного тока
- •4.2.7 Тиристор в цепи переменного тока
- •4.2.7 Запираемые тиристоры
- •4.2.8 Защита тиристоров
- •4.3 Модули силовых электронных ключей
- •4.3.1 Последовательное и параллельное соединение ключевых элементов
- •4.3.2 Типовые схемы модулей ключей
- •4.3.3 Igbt-модули
- •4.3.4 «Интеллектуальные» силовые интегральные схемы
- •4.3.5 Теплоотвод в силовых электронных приборах
- •4.3.6 Охлаждение силовых электронных ключей
- •4.4 Системы управления силовых электронных аппаратов
- •4.4.1 Общие сведения о системах управления
- •4.4.2 Основные принципы управления импульсными системами
- •4.4.3 Интегральные микросхемы в системах управления
- •4.4.4 Базовые цифровые имс
- •4.4.5 Базовые аналоговые имс
- •4.4.6 Компараторы напряжения
- •4.4.7 Усилители сигналов
- •4.4.8 Генераторы импульсов
- •4.5 Микропроцессоры в электрических аппаратах
- •4.5.1 Определения и особенности микропроцессора, микропроцессорной системы и микроконтроллера
- •4.5.2 Структура типичной микроЭвм
- •4.5.3 Классификация и структура микроконтроллеров
- •4.5.4 Основные особенности микроконтроллеров серии pic. Состав и назначение семейств pic-контроллеров
- •4.5.5 Микроконтроллеры семейств pic16cxxx и pic17cxxx
- •4.5.6 Особенности архитектуры микроконтроллеров семейства pic16cxxx
- •5 Статические коммутационные аппараты и регуляторы
- •5.1 Статические коммутационные аппараты и регуляторы постоянного тока
- •5.1.1 Тиристорные контакторы постоянного тока
- •5.1.2 Регуляторы-стабилизаторы постоянного тока
- •5.1.3 Параметрические стабилизаторы
- •5.1.4 Стабилизаторы непрерывного действия
- •5.1.5 Импульсные регуляторы
- •5.2 Статические коммутационные аппараты и регуляторы переменного тока
- •5.2.1 Тиристорные контакторы переменного тока
- •5.2.2 Регуляторы-стабилизаторы переменного тока
- •Заключение
- •Глоссарий Классификация электрических аппаратов
- •Токоведущие и контактные детали электрических аппаратов
- •Гашение электрической дуги
- •Электрические аппараты ручного управления
- •Электрические аппараты дистанционного управления Магнитная система электрических аппаратов постоянного и переменного тока
- •Устройство и принцип действия электромагнитов
- •Электромагнитные муфты и тормозные устройства
- •Электромагнитные реле, пускатели и контакторы
- •Электрические аппараты защиты
- •Предохранители и тепловые реле
- •Характеристики:
- •Автоматические выключатели и токовые реле
- •Бесконтактные электрические аппараты и датчики Датчики
- •Основная и дополнительная литература Основная литература
- •Дополнительная литература
- •Оглавление
1.2.6. Тепловые процессы в электрических аппаратах
Электрические аппараты содержат много элементов, одни из которых являются проводниками электрических токов, другие – проводниками магнитных потоков, а третьи служат для электрической изоляции. Часть элементов может перемещаться в пространстве, передавая усилия другим узлам и блокам. Работа большой части аппаратов связана с преобразованием одних видов энергии в другие. При этом, как известно, неизбежны потери энергии и превращение ее в тепло. Тепловая энергия частично расходуется на повышение температуры аппарата и частично отдается в окружающую среду.
При увеличении температуры происходит ускоренное старение изоляции проводников и уменьшение их механической прочности. Так, например, при возрастании длительной температуры всего лишь на 8°С сверх допустимой для данного класса изоляции, срок службы последней сокращается в 2 раза.
При увеличении температуры меди со 100 до 250°С механическая прочность снижается на 40 %. Следует иметь в виду, что при коротком замыкании, когда температура может достигать предельных значений (200–300 °С), токоведущие части подвержены воздействию больших электродинамических сил. Работа контактных соединений также сильно зависит от температуры.
Нагрев токоведущих частей, магнитопроводов и изоляции аппарата в значительной степени определяет его надежность. Поэтому, во всех возможных режимах работы температура частей аппарата не должна превосходить значений, при которых не обеспечивается его длительная работа.
1.2.7. Источники теплоты в электрических аппаратах
При протекании
тока по электрическому проводнику в
нём выделяется мощность
,
которая для однородного проводника с
равномерной плотностью постоянного
тока
в единицу
времени определяется формулой:
, (1.2.27)
где
– активное электрическое сопротивление
проводника длиной
и поперечным сечением
;
–
удельное электрическое сопротивление
материала проводника.
Удельное
электрическое сопротивление материала
проводника
зависит от температуры
и в большинстве
случаев (до температуры 150 – 200 °С)
определяется как:
(1.2.28)
где
– удельное сопротивление при температуре
0°С;
–
температурный коэффициент сопротивления.
При прохождении
по проводникам переменного тока начинает
сказываться поверхностный эффект и
эффект близости. Поверхностным
эффектом
называется явление неравномерного
распределения плотности переменного
тока по поперечному сечению одиночного
проводника, а эффектом
близости –
явление неравномерного распределения
плотности переменного тока, обусловленное
влиянием друг на друга близко расположенных
проводников с токами. Неравномерность
распределения плотности тока приводит
к возникновению дополнительных потерь
мощности по сравнению с постоянным
током. При этом следует учитывать, что
в проводниках из ферромагнитных
материалов вышеуказанные явления
проявляются значительно сильнее, чем
в немагнитных проводниках. Дополнительные
потери учитываются коэффициентом
поверхностного эффекта
и коэффициентом
близости
,
которые зависят от частоты переменного
тока, геометрических размеров проводников
и расстояний между ними. Значения
и
приведены в[3]. Потери мощности при
переменном токе будут равны:
. (1.2.29)
В ферромагнитных
нетоковедущих частях электрического
аппарата, находящихся в переменном
магнитном поле, также имеют место
источники теплоты. Это обусловлено
потерями на перемагничивание и вихревыми
токами, возникающими тогда, когда
переменный во времени магнитный поток
пронизывает ферромагнитные части
аппарата. Полные потери в стали
магнитопровода
на гистерезис и вихревые токи могут
быть найдены [3] по формуле:
, (1.2.30)
где
– максимальное значение индукции в
магнитопроводе;
и
–
коэффициенты потерь от гистерезиса и
вихревых токов;
– масса магнитопровода;
– частота тока. Если магнитопровод
выполнен из листовой электротехнической
стали (шихтованный магнитопровод), то
потери мощности в нём существенно
меньше, чем в сплошном стальном
магнитопроводе.
В аппаратах переменного тока высокого напряжения помимо потерь в проводниках и ферромагнитных материалах необходимо учитывать потери в изоляции:
(1.2.31)
где
– емкость изоляции;
– действующее значение напряжения;
– тангенс угла диэлектрических потерь
в изоляции.
В электромеханических аппаратах, предназначенных для коммутации электрических цепей, мощным источником теплоты является электрическая дуга. В электромагнитных муфтах, предназначенных для коммутации и передачи механической мощности, потери на трение составляют существенную долю от общих потерь мощности.