
- •Политехнический институт Сибирского федерального университета электрические и электронные аппараты
- •Введение
- •1. Основы теории электрических аппаратов
- •1.1.Электрические и электронные аппараты как средства управления режимами работы, защиты и регулирования параметров электротехнических и электроэнергетических систем
- •1.1.1. Назначение и классификация электрических аппаратов
- •1.1.2. Требования, предъявляемые к электрическим аппаратам
- •1.2. Физические явления в электрических аппаратах и основы теории электрических аппаратов
- •1.2.1. Электродинамические силы в электрических аппаратах
- •1.2.2. Методы расчета электродинамических усилий и направления их действия
- •1.2.3. Расчет электродинамических усилий
- •1.2.4. Электродинамические усилия при переменном токе
- •1.2.5. Электродинамическая стойкость аппаратов. Механический резонанс
- •1.2.6. Тепловые процессы в электрических аппаратах
- •1.2.7. Источники теплоты в электрических аппаратах
- •1.2.8. Способы распространения теплоты в электрических аппаратах
- •1.2.9. Задачи теплового расчета
- •1.2.10. Режимы работы электрических аппаратов
- •1.2.11. Нагрев электрических аппаратов при различных режимах работы
- •1.2.12. Нагрев электрических аппаратов при коротком замыкании. Термическая стойкость аппарата
- •1.2.13. Контактные явления и классификация электрических контактов
- •1.2.14. Контактная поверхность и контактное сопротивление
- •1.2.15. Математическая модель электрических контактов
- •1.2.16. Влияние переходного сопротивления контактов на нагрев проводников. Сваривание электрических контактов
- •1.2.17. Износ контактов
- •1.2.18. Материалы для контактных соединений
- •1.2.19. Коммутация электрической цепи
- •1.2.20. Включение электрической цепи
- •1.2.21. Отключение электрической цепи контактными аппаратами
- •1.2.22. Электрическая дуга
- •1.2.23. Статическая вольтамперная характеристика электрической дуги постоянного тока
- •1.2.24. Динамическая вольтамперная характеристика электрической дуги постоянного тока
- •1.2.25. Условия гашения дуги постоянного тока
- •1.2.26. Условия гашения электрической дуги переменного тока
- •1.2.27. Электрическая дуга в магнитном поле
- •1.2.28. Способы воздействия на электрическую дугу в коммутационных аппаратах
- •1.3. Электромагниты
- •1.3.1. Электромагниты и их магнитные цепи
- •1.3.2.Методы расчета электромагнитов
- •1.3.3. Тяговые силы в электромагнитах
- •1.3.4. Согласование тяговой характеристики электромагнита с механической нагрузкой. Коэффициент запаса
- •1.3.5. Сила тяги электромагнита переменного тока
- •1.3.6. Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока
- •1.3.7. Устранение вибрации якоря электромагнита переменного тока
- •1.3.8. Время срабатывания и отключения электромагнита и способы изменения его быстродействия
- •2. Электромеханические аппараты управления, автоматики, распределения электрической энергии и релейной защиты.
- •2.1.Электромеханические реле
- •2.1.1. Реле управления
- •2.1.2. Электромагнитные реле тока и напряжения
- •2.1.3. Реле времени
- •2.1.4. Поляризованные реле
- •2.1.5. Электромагнитные реле на герконах
- •2.1.6. Тепловые реле
- •2.1.7. Индукционные реле
- •2.2.Электромеханические датчики
- •2.2.1. Электромеханические датчики и требования, предъявляемые к ним
- •2.2.2. Пассивные датчики
- •2.2.3. Активные датчики
- •2.3. Электромеханические исполнительные устройства
- •2.3.1. Электромеханические исполнительные устройства и их характеристики
- •2.3.2. Конструкции исполнительных устройств
- •2.4. Плавкие предохранители
- •2.4.1. Принцип действия и устройство предохранителей
- •2.4.2. Основные параметры предохранителей
- •2.4.3. Время срабатывания и ампер-секундная характеристика предохранителя
- •.2.4.4. Работа предохранителей при номинальном токе и токе короткого замыкания
- •2.4.5. Выбор предохранителей
- •2.5.Контакторы
- •2.5.1. Контакторы и их технические параметры
- •2.5.2. Устройство электромагнитных контакторов
- •2.5.3. Магнитные пускатели
- •2.5.4. Конструкции электромагнитных контакторов постоянного тока
- •2.5.5. Конструкции электромагнитных контакторов переменного тока
- •2.5.6. Жидкометаллические контакторы
- •2.5.7. Герметизированные контакторы
- •2.5.8. Синхронные контакторы
- •2.5.9. Гибридные контакторы
- •2.5.10. Расчет и выбор контакторов и пускателей
- •2.6. Автоматические воздушные выключатели низкого напряжения
- •2.6.1. Общие сведения
- •2.6.2. Принцип действия и основные узлы автоматических выключателей
- •2.6.3. Специальные типы автоматических выключателей
- •2.6.4. Выбор автоматического выключателя
- •2.7. Низковольтные комплектные устройства
- •2.7.1. Общие сведения о низковольтных комплектных устройствах
- •2.7.2. Режимы работы низковольтных комплектных устройств
- •2.7.3. Выбор габаритных размеров низковольтных комплектных устройств и особенности их монтажа
- •3. Аппараты высокого напряжения
- •3.1. Коммутационные аппараты высокого напряжения
- •3.1.1. Классификация аппаратов высокого напряжения и требования, предъявляемые к ним
- •3.1.2. Воздушные выключатели
- •3.1.3. Элегазовые выключатели
- •3.1.4. Масляные выключатели
- •3.1.5. Электромагнитные выключатели высокого напряжения
- •3.1.6. Вакуумные выключатели
- •3.1.7. Разъединители, отделители, короткозамыкатели
- •3.2.Измерительные трансформаторы высокого напряжения
- •3.2.1.Измерительные трансформаторы тока высокого напряжения
- •3.2.2. Трансформаторы напряжения
- •3.2.3. Защитные и токоограничивающие аппараты
- •3.3. Комплектные распределительные устройства высокого напряжения
- •3.3.1. Распределительные устройства закрытого и открытого типов
- •3.3.2. Комплектные распределительные устройства внутренней установки
- •3.3.3. Комплектные распределительные устройства наружной установки
- •3.3.4. Комплектные распределительные устройства с элегазовой изоляцией
- •4 Электронные и микропроцессорные аппараты
- •4.1 Общие сведения об электронных ключах и бездуговой коммутации
- •4.1.1 Электронные ключи
- •4.1.2 Статические и динамические режимы работы ключей
- •4.1.3 Область безопасной работы и защита ключей
- •4.2 Основные виды силовых электронных ключей
- •4.2.1 Силовые диоды
- •4.2.2 Защита силовых диодов
- •4.2.3 Основные типы силовых диодов
- •4.2.4 Силовые транзисторы
- •4.2.5 Тиристоры
- •4.2.6 Тиристор в цепи постоянного тока
- •4.2.7 Тиристор в цепи переменного тока
- •4.2.7 Запираемые тиристоры
- •4.2.8 Защита тиристоров
- •4.3 Модули силовых электронных ключей
- •4.3.1 Последовательное и параллельное соединение ключевых элементов
- •4.3.2 Типовые схемы модулей ключей
- •4.3.3 Igbt-модули
- •4.3.4 «Интеллектуальные» силовые интегральные схемы
- •4.3.5 Теплоотвод в силовых электронных приборах
- •4.3.6 Охлаждение силовых электронных ключей
- •4.4 Системы управления силовых электронных аппаратов
- •4.4.1 Общие сведения о системах управления
- •4.4.2 Основные принципы управления импульсными системами
- •4.4.3 Интегральные микросхемы в системах управления
- •4.4.4 Базовые цифровые имс
- •4.4.5 Базовые аналоговые имс
- •4.4.6 Компараторы напряжения
- •4.4.7 Усилители сигналов
- •4.4.8 Генераторы импульсов
- •4.5 Микропроцессоры в электрических аппаратах
- •4.5.1 Определения и особенности микропроцессора, микропроцессорной системы и микроконтроллера
- •4.5.2 Структура типичной микроЭвм
- •4.5.3 Классификация и структура микроконтроллеров
- •4.5.4 Основные особенности микроконтроллеров серии pic. Состав и назначение семейств pic-контроллеров
- •4.5.5 Микроконтроллеры семейств pic16cxxx и pic17cxxx
- •4.5.6 Особенности архитектуры микроконтроллеров семейства pic16cxxx
- •5 Статические коммутационные аппараты и регуляторы
- •5.1 Статические коммутационные аппараты и регуляторы постоянного тока
- •5.1.1 Тиристорные контакторы постоянного тока
- •5.1.2 Регуляторы-стабилизаторы постоянного тока
- •5.1.3 Параметрические стабилизаторы
- •5.1.4 Стабилизаторы непрерывного действия
- •5.1.5 Импульсные регуляторы
- •5.2 Статические коммутационные аппараты и регуляторы переменного тока
- •5.2.1 Тиристорные контакторы переменного тока
- •5.2.2 Регуляторы-стабилизаторы переменного тока
- •Заключение
- •Глоссарий Классификация электрических аппаратов
- •Токоведущие и контактные детали электрических аппаратов
- •Гашение электрической дуги
- •Электрические аппараты ручного управления
- •Электрические аппараты дистанционного управления Магнитная система электрических аппаратов постоянного и переменного тока
- •Устройство и принцип действия электромагнитов
- •Электромагнитные муфты и тормозные устройства
- •Электромагнитные реле, пускатели и контакторы
- •Электрические аппараты защиты
- •Предохранители и тепловые реле
- •Характеристики:
- •Автоматические выключатели и токовые реле
- •Бесконтактные электрические аппараты и датчики Датчики
- •Основная и дополнительная литература Основная литература
- •Дополнительная литература
- •Оглавление
4.2.5 Тиристоры
Принцип действия тиристора
Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т.е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля. Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.
Тиристор имеет четырехслойную p-n-p-n-структуру с тремя выводами: анод (A), катод (К) и управляющий электрод (УЭ). Структурная схема, условное обозначение и вольтамперная характеристика триодного тиристора приведены на рис. 4.2.4.
Рис. 4.2.4 Триодный тиристор: а упрощённая структура; бусловное графическое обозначение; ввольтамперная характеристика.
На
рис. 4.2.4, в представлено семейство
выходных статических ВАХ при различных
значениях тока управления
.
Предельное прямое напряжение, которое
выдерживается тиристором без его
включения, имеет максимальные значения
при
=0.
При увеличении тока
прямое напряжение, выдерживаемое
тиристором, снижается. Включенному
состоянию тиристора соответствует
ветвь 4, выключенному – ветвь 1, процессу
включения – ветвь
3.
Удерживающий
ток
или ток
удержания
равен минимально допустимому значению
прямого тока iA
,
при котором тиристор остается в проводящем
состоянии. Этому значению также
соответствует минимально возможное
значение прямого падения напряжения
на включенном тиристоре
.
Ветвь
5 представляет собой зависимость тока
утечки от обратного напряжения. При
превышении обратным напряжением значения
начинается
резкое возрастание обратного тока,
связанное с пробоем тиристора. Характер
пробоя может соответствовать необратимому
процессу или процессу лавинного пробоя,
свойственного работе полупроводникового
стабилитрона.
При
подключении управляющего электрода УЭ
к p2-слою
ток управления
необходимо пропускать положительный
или его называют “втекающий”. Простейшая
схема включения триодного тиристора
на нагрузку приведена на рис. 4.8, а.
Имеются триодные тиристоры, включение
которых производится не “втекающим”,
а “вытекающим”, то есть отрицательным
током по управляющему электроду.
Управляющий электрод (база) выведен в
этом случае от слояn1
(рис. 4.2.4, а). Вольтамперная характеристика
этого “обращённого” тиристора (тиристора
с анодным управлением) аналогична
характеристике обычного тиристора
(рис. 4.2.4, в). Простейшая схема включения
“обращённого” тиристора на нагрузку
приведена на рис. 4.2.5, б.
Рис. 4.2.5 Простейшие схемы включения на нагрузку триодных тиристоров: а обычного; б обращённого.
При
пропускании тока
через управляющий электрод, увеличивается
ток черезП3,
следовательно, увеличивается добавочный
ток через запертый переход П2;
то же увеличение зарядов будет при более
низком напряжении, и “пробой” этого
перехода наступает при меньшем напряжении
на вентиле, то есть с увеличением
уменьшается напряжение включения
(рис. 4.2.5, в). Ток управления, при котором
сводится фактически до
и характеристика тиристора вырождается
в характеристику обыкновенного диода,
называется током спрямления
.
Тиристоры являются наиболее мощными электронными ключами, способными коммутировать цепи с напряжением до 5 кВ и токами до 5 кА при частоте не более 1 кГц. Конструктивное исполнение тиристоров приведено на рис. 4.2.6.
Рис. 4.2.6. Конструкция корпусов тиристоров: а) – таблеточная; б) – штыревая