Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8 вопрос.doc
Скачиваний:
23
Добавлен:
31.05.2015
Размер:
325.63 Кб
Скачать

8. Экологические факторы многочисленны и разнообразны. Их числу, вероятно, нет предела. Они отличаются по характеру влияния на биологические системы (организмы, популяции, биоценозы) и ряду других признаков. Потенциальная неограниченность численности и многообразие экологических факторов вызвали необходимость их систематизации. Современная классификация экологических факторов приведена в справочнике Н. Ф. Реймерса «Природопользование» (1990).

В основу классификации положен принцип учета особенностей экологических факторов по их происхождению, характеру действия на живые системы и другим признакам.

По времени возникновения экологические факторы подразделяют на три группы: эволюционные, исторические и действующие.

Эволюционный фактор — это современный фактор среды, порожденный эволюцией жизни. Так, например, озоновый экран — ныне действующий экологический фактор, влияющий на организмы, популяции, биоценозы, экологические системы, в том числе и на биосферу, — существовал в прошлые геологические эпохи. Возникновение озонового экрана связано с появлением фотосинтеза и накоплением в атмосфере кислорода.

Исторический, как и эволюционный, — это ныне действующий экологический фактор. В отличие от эволюционного он результат исторического развития человечества, его хозяйственной деятельности. Например, поля, сады, культурные пастбища, животноводческие фермы и комплексы, другие антропогенные компоненты аграрных ландшафтов — экологические факторы, обусловленные Сельскохозяйственной деятельностью людей.

Действующий фактор — это современный экологический фактор. К нему относятся мелиорирование земли — экологический фактор, обеспечивающий развитие высокопродуктивного растениеводства, животноводства и др.

По периодичности экологические факторы подразделяют на периодические и непериодические.

Периодический фактор — это циклически изменяющийся экологический фактор. Примером могут служить периодические изменения условий среды при смене времен года, в частности, в средних широтах Северного полушария. К периодическим изменениям экологических факторов организмы адаптируются. Строгий учет циклических изменений экологических факторов при ведении сельского хозяйства крайне необходим. В соответствии со сменой времен года проводят посев сельскохозяйственных культур, уборку урожая, организуют пастбищное и стойловое содержание животных и т. д.

Непериодический фактор — фактор среды, возникающий внезапно, например дождь, град, буря и т. д. Одна из острейших проблем сельского хозяйства — разработка надежных методов нейтрализации и защиты от действия неблагоприятных непериодических факторов (заморозков во время цветения растений, засух или, наоборот, наводнений, затрудняющих получение высоких урожаев сельскохозяйственных культур и кормовых трав, продуктивности домашних животных).

По очередности возникновения экологические факторы подразделяют на первичные и вторичные. Первичный — это исходный экологический фактор, вторичный — его следствие. Так, формирование тундровых, таежных, степных, тропических биоценозов обусловлено особенностями климатических условий того или иного региона земного шара. Климат, в свою очередь, зависит от солнечной радиации, шарообразности Земли, ее движения вокруг своей оси и вокруг Солнца.

По происхождению различают факторы космические, абиотические (абиогенные), биотические, биокосные, антропогенные, антропические, природно-антропогенные.

Космические факторы имеют космическое происхождение. К ним относится поток космической пыли, космических лучей и т. д. Важнейший космический фактор — солнечная радиация. Лучи Солнца — источник энергии, используемой растениями в процессе фотосинтеза. Растениеводство можно рассматривать как систему мероприятий по интенсификации фотосинтеза культивируемых растений.

Абиотический (абиогенный) фактор — это составной компонент неживой природы, например воздух, вода. Абиотические факторы, взятые в совокупности, формируют среду обитания для сообществ взаимосвязанных популяций растений и животных (биоценозов).

Термином «биотический фактор» обозначают особь или группу организмов, влияющих на биологическую систему (растение, животное, популяцию, фитоценоз, зооценоз, биоценоз). Примеры биотического фактора — это стадо овец, потребляющих пастбищную растительность; патогенные микробы и грибы, вызывающие заболевание у растений и (или) животных; кошка, поедающая мышь, и т. д.

Биокосный фактор — фактор среды, трансформированный в процессе жизни. К числу таких факторов можно отнести почву — биокосное тело, сформировавшееся при взаимодействии живой и неживой природы.

Антропические и антропогенные экологические факторы связаны с хозяйственной деятельностью человека. В первом случае речь идет о прямом воздействии людей на живые системы (например, искусственный отбор и селекция культивируемых растений и животных), во втором — об их косвенном, опосредованном влиянии на природу (например, подтопление аграрных ландшафтов при создании водохранилищ). Многие авторы используют один термин «антропогенный фактор», обозначая им как антропические, так и антропогенные воздействия на природу.

Природно-антропогенный фактор —это компонент природной среды, преобразованный деятельностью человека. Классическим примером природно-антропогенного фактора является почва, окультуренная человеком.

Изменения факторов среды во времени могут быть:

1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток, или сезоном года, или ритмом приливов и отливов в океане;

2) нерегулярными, без четкой периодичности, например, изменения погодных условий в разные годы, явления катастрофического характера - бури, ливни, обвалы и т.п.;

3) направленными на протяжении известных, иногда длительных, отрезков времени, например, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т.п.

Биологические ритмы делят на экзогенные и эндогенные.Экзогенные (внешние) ритмы возникают как реакция на периодические изменения среды (смену дня и ночи, сезонов, солнечной активности). Эндогенные (внутренние) ритмы генерируются самим организмом. Ритмичность имеют процессы синтеза ДНК, РНК и белков, работа ферментов, деление клеток, биение сердца, дыхание и т.д. Внешние воздействия могут сдвигать фазы этих ритмов и менять их амплитуду.[ ...]

Среди эндогенных различают физиологические и экологические ритмы. Физиологические ритмы (биение сердца, дыхание, работа желез внутренней секреции и др.) поддерживают непрерывную жизнедеятельность организмов. Экологические ритмы (суточные, годичные, приливные, лунные и др.) возникли как приспособление живых существ к периодическим изменениям среды. Физиологические ритмы существенно варьируют в зависимости от состояния организма, экологические — более стабильны и соответствуют внешним ритмам.[ ...]

Экологические ритмы способны подстраиваться к изменениям цикличности внешних условий, но лишь в определенных пределах. Такая подстройка возможна благодаря тому, что в течение каждого периода имеются определенные интервалы времени (время потенциальной готовности), когда организм готов к восприятию сигнала извне, например яркого света или темноты. Если сигнал несколько запаздывает или приходит преждевременно, соответственно сдвигается фаза ритма. В экспериментальных условиях при постоянном освещении и температуре этот же механизм обеспечивает регулярный сдвиг фазы в течение каждого периода. Поэтому период ритма в этих условиях обычно не соответствует природному циклу и постепенно расходится по фазе с местным временем.[ ...]

Ритмический характер имеют физическое и психологическое состояния человека. Нарушение установившихся ритмов жизнедеятельности может снижать работоспособность, оказывать неблагоприятное воздействие на здоровье человека. Изучение биоритмов имеет большое значение при организации труда и отдыха человека, особенно в экстремальных условиях (в полярных условиях, в космосе, при быстром перемещении в другие часовые пояса и т.д.).[ ...]

Несовпадение во времени между природными и антропогенными явлениями часто приводит к разрушению природных систем. Например, при проведении слишком частых рубок леса

9. Популяцией в экологии называют группу особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию.

Слово «популяция» происходит от латинского «популюс» – народ, население. Экологическую популяцию, таким образом, можно определить как население одного вида на определенной территории.

Члены одной популяции оказывают друг на друга не меньшее воздействие, чем физические факторы среды или другие обитающие совместно виды организмов. В популяциях проявляются в той или иной степени все формы связей, характерные для межвидовых отношений, но наиболее ярко выражены мутуалистические (взаимно полезные) и конкурентные. Специфические внутривидовые взаимосвязи– это отношения, связанные с воспроизводством: между особями разных полов и между родительским и дочерним поколениями.

При половом размножении обмен генами превращает популяцию в относительно целостную генетическую систему. Если перекрестное оплодотворение отсутствует и преобладает вегетативное, партеногенетическое или другие способы размножения, генетические связи слабее и популяция представляет собой систему клонов, или чистых линий, совместно использующих среду. Такие популяции объединены в основном экологическими связями. Во всех случаях в популяциях действуют законы, позволяющие таким образом использовать ограниченные ресурсы среды, чтобы обеспечить оставление потомства. Достигается это в основном через количественные изменения населения. Популяции многих видов обладают свойствами, позволяющими им регулировать свою численность.

Таким образом, популяции, как групповые объединения, обладают рядом специфических свойств, которые не присущи каждой отдельно взятой особи.

Основные характеристики популяций:

1) численность– общее количество особей на выделяемой территории;

2) плотность популяции – среднее число особей на единицу площади или объема занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства;

3) рождаемость– число новых особей, появившихся за единицу времени в результате размножения;

4) смертность – показатель, отражающий количество погибших в популяции особей за определенный отрезок времени;

5) прирост популяции– разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным;

6) темп роста – средний прирост за единицу времени.

Популяции свойственна определенная организация. Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой – под влиянием абиотических факторов среды и популяций других видов. Структура популяций имеет, следовательно, приспособительный характер. Разные популяции одного вида обладают как сходными особенностями структуры, так и отличительными, характеризующими специфику экологических условий в местах их обитания.

Таким образом, кроме адаптивных возможностей отдельных особей, население вида на определенной территории характеризуется еще и приспособительными чертами групповой организации, которые являются свойствами популяции как надиндивидуальной системы. Адаптивные возможности вида в целом как системы популяций значительно шире приспособительных особенностей каждой конкретной особи.

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала, свойственного виду. Понятие биотического потенциала введено в экологию в 1928 г. Р.Чепменом. Этот показатель отражает теоретический максимум потомков от одной пары (или одной особи) за единицу времени, например за год или за весь жизненный цикл.

При расчетах его чаще всего выражают коэффициентом г и вычисляют как максимально возможный прирост популяции ΔN за отрезок времени Δt, отнесенный к одной особи, при начальной численности популяцииN0:

откуда

Величина биотического потенциала чрезвычайно различна у разных видов. Например, самка косули способна произвести за жизнь 10–15 козлят, трихина (Trichinella spiralis) – отложить 1,8 тыс. личинок, самка медоносной пчелы – 50 тыс. яиц, а луна-рыба – до 3 млрд икринок. Если бы все зародыши сохранялись, а все потомство выживало, численность любой популяции через определенные интервалы увеличивалась бы в геометрической прогрессии.

Кривая, отражающая на графике подобный рост популяции, быстро увеличивает крутизну и уходит в бесконечность (рис. 122). Такая кривая носит название экспоненциальной. На логарифмической шкале подобная зависимость численности популяции от времени будет представлена прямой, а биотический потенциал г отразится ее наклоном по отношению к горизонтальной оси, который тем круче, чем больше величинаr.

Рис. 122. Реальная(1) и теоретическая(2) кривая роста популяции парамеций

В природе биотический потенциал популяции никогда не реализуется полностью. Его величина обычно складывается как разность между рождаемостью и смертностью в популяциях: r = b – d, гдеb– число родившихся, аd– число погибших особей в популяции за один и тот же период времени.

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

11. Особи разных видов существуют в биоценозах не изолированно, они вступают в разнообразные прямые и косвенные взаимоотношения. Их обычно разделяют на четыре типа: трофические, тонические, форические, фабрические.

Трофические отношениявозникают тогда, когда один вид в биоценозе питается другим (либо его мертвыми остатками, либо продуктами его жизнедеятельности). Божья коровка, питающаяся тлей, корова на лугу, поедающая траву, волк, охотящийся на зайца, — все это примеры прямых трофических связей между видами.

При конкуренции двух видов из-за ресурса питания между ними возникает косвенная трофическая связь. Так, волк и лиса вступают в косвенные трофические связи при использовании такого общего пищевого ресурса, как заяц.

Топические отношенияхарактеризуют изменение условий обитания одного вида в результате жизнедеятельности другого: например, отношения между деревьями и гнездящимися на них птицами, живущими на них насекомыми; отношения между организмами и их паразитами и т.п. Ель, затеняя почву, вытесняет светолюбивые виды; ракообразные поселяются на коже китов; мхи и лишайники располагаются на коре деревьев. Все эти организмы связаны друг с другом топическими связями.

Форические связи— участие одного вида в распространении другого. Если в роли распространителей семян, спор, пыльцы и т.п. выступают животные, то такой процесс называют зоохорией.Если животные переносят (транспортируют) других, более мелких животных, — это форезия.Характерной особенностью форезии является отсутствие паразитизма.

Перенос семян растений осуществляется обычно при помощи специальных приспособлений. Животные могут захватывать их пассивно. Так, за шерсть крупных млекопитающих могут цепляться своими шипами семена лопуха или череды и переноситься на большие расстояния.

Активно переносятся непереваренные семена, прошедшие через пищеварительный тракт животных, чаще всего птиц. Например, у грачей примерно треть семян выводится пригодными для прорастания. В ряде случаев адаптация растений к зоохории зашла так далеко, что у семян, прошедших через кишечник птиц и подвергшихся действию пищеварительных соков, повышается всхожесть. В переносе грибных спор большую роль играют насекомые.

Форезия животных — это пассивный способ расселения, свойственный видам, которым для нормальной жизнедеятельности необходим перенос из одного биотопа в другой. Личинки ряда клещей, находясь на других животных, например насекомых, расселяются при помощи чужих крыльев. Жуки-навозники иногда не в состоянии опустить свои надкрылья из-за густо скопившихся на их теле клещей. Птицы нередко переносят на перьях и лапках мелких животных или их яйца, а также цисты простейших. Икра некоторых рыб, например, выдерживает двухнедельное обсыхание. Вполне свежая икра моллюска была обнаружена на лапках утки, подстреленной в Сахаре в 160 км от ближайшего водоема. На короткие расстояния водоплавающие птицы могут переносить даже мальков рыб, случайно попавших в их оперение.

Яйца мелких ракообразных и некоторых рыб выдерживают «путешествие» через пищеварительный тракт птиц — еще один способ переселения. Вместе с хозяевами в соседние водоемы могут попасть и водяные клещи, паразитирующие налетающих насекомых, например на стрекозах.

Фабрические связи— тип биопенотических отношений, при которых особи одного вида используют для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, птицы строят гнезда из сухих веточек, травы, шерсти млекопитающих и т.п. Личинки ручейников используют для строительства кусочки коры, песчинки, обломки или раковины с живыми моллюсками.

Из всех типов биотических отношений между видами в биоценозе наибольшее значение имеют топические и трофические связи, поскольку они удерживают друг возле друга организмы разных видов, объединяя их в достаточно стабильные сообщества (биоценозы) разного масштаба.

Выделяют две принципиально разные стороны популяционной динамики: модификацию ирегуляцию. Модификация – это случайное отклонение численности, возникающее в результате воздействия самых разнообразных факторов, не связанных с плотностью популяции.Регуляция– это возврат популяции после отклонения к исходному состоянию, совершающийся под влиянием факторов, сила действия которых определяется плотностью популяции.

Модифицирующие факторы, вызывая изменение численности популяций, сами не испытывают влияния этих изменений. Действие их, таким образом, одностороннее. К ним относятся все абиотические влияния среды на организмы, на качество и количество их корма и т. п. Благоприятная погодная обстановка может послужить причиной массовой вспышки размножения вида и перенаселения занимаемой им территории, как, например, в случае стадных саранчовых. Отрицательное воздействие модифицирующих факторов, наоборот, снижает численность популяции иногда до полного ее исчезновения

Влияние модифицирующих факторов, не зависящих от плотности популяции, может вызывать резкий спад ее численности. В сельском хозяйстве чрезвычайно важно прогнозирование погодных условий для возможностей защиты урожая.

Регулирующие факторы не просто изменяют численность популяции, а сглаживают ее колебания, приводя после очередного отклонения от оптимума к прежнему уровню. Это происходит потому, что эффект их воздействия тем сильнее, чем выше плотность популяции. В качестве регулирующих сил выступают межвидовые и внутривидовые отношения организмов.

Межвидовые связи осуществляются в биоценозах, поэтому относятся к группебиоценотических механизмов регуляции численности популяции. Наиболее эффективные из них – трофические отношения организмов: хищничество, паразитизм, собирательство, пастьба и другие, как прямые, так и косвенные. Прямые связи хищник – жертва – наиболее изученные регуляторные механизмы в сообществах.

Внутренние механизмы– это все те качественные изменения популяции в ответ на повышение плотности, которые рассматривались какмеханизмы ее гомеостаза. Многообразие этих механизмов (самоизреживание, каннибализм, территориальное поведение, расселительные инстинкты, фазовость насекомых, стресс-реакция млекопитающих, изменения плодовитости, агрессивности и т. п.) свидетельствует о том, что любой способ снятия угрозы перенаселения поддерживается естественным отбором как важная адаптация в жизни вида.

Инерционные механизмы зависят главным образом от плотности предыдущих поколений,безынерционные– от плотности текущих генераций. Например, функциональная реакция хищников – безынерционный механизм воздействия на популяцию жертв, так как количество пойманных жертв увеличивается сразу вслед за ростом их численности. Количественная же реакция, связанная с увеличением численности самих хищников, всегда запаздывает, так как для миграции или размножения их нужно обычно значительное время. Часто поэтому естественные враги сильно размножаются уже тогда, когда численность жертв по каким-то причинам пошла на убыль. В динамике численности насекомых, например, наибольшую инерционность имеет деятельность энтомофагов, особенно тех, у кого время генерации больше, чем у жертвы. Менее инерционны болезнетворные микроорганизмы. При высокой плотности популяций насекомых эпизоотии могут «вспыхивать» очень быстро. При этом играет роль и скученность насекомых, и их ослабленность в результате начинающегося недостатка корма.

12.

«Биогеоценоз– это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющих свою специфику взаимодействия этих слагаемых ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии» (В. Н. Сукачев, 1964).

. Наука о биогеоценозах – биогеоценология– выросла из геоботаники и направлена на изучение функционирования экосистем в конкретных условиях ландшафта в зависимости от свойств почвы, рельефа, характера окружения биогеоценоза и составляющих его первичных компонентов – горной породы, животных, растений, микроорганизмов.

В биогеоценозе В. Н. Сукачев выделял два блока: экотоп – совокупность условий абиотической среды ибиоценоз– совокупность всех живых организмов.

Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), абиотоп– как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов. Во внутреннем сложении биогеоценоза выделяют такие структурно-функциональные единицы, как парцеллы (термин предложен Н. В.Дылисом).Биогеоценотические парцеллы включают в себя растения, животное население, микроорганизмы, мертвую органику, почву и атмосферу по всей вертикальной толще биогеоценоза, создавая его внутреннюю мозаику.

ообщество (биоценоз) является основным компонентом природных Надорганизменные систем. Надорганизменные системы имеют свои особенности в сравнении с организмом:

1. Сообщество всегда возникает, формируется из готовых частей, которые есть в окружающей среде. В отдельном организме они возникают путем постепенной дифференциации зачатков.

2. Составные части сообщества заменяемы. Один вид может занять место другого со сходными экологическими потребностями без ущерба для системы. Части же любого организма уникальны.

3. Если же в организме поддерживается постоянная согласованность деятельности его органов, тканей и клеток, то надорганизменная система существует за счет уравновешивания противоположно направленных сил, интересы многих видов в сообществе прямо противоположны (хищник - жертва).

4. Сообщества основаны на количественной регуляции численности одних видов другими, в организме регуляция всех органов осуществляется нервной системой и гуморальным путем.

5. Размеры организма ограничены его внутренней наследственной программой. Размеры надорганизменной системы определяются внешними причинами.

Как и всякая биологическая система, биоценоз имеет свою структуру, которую можно охарактеризовать в двух аспектах:

1) видовая, или таксономическая, структура;

2) пространственная структура;

Видовая, или таксономическая, структура

Видовая структура характеризует разнообразие видов и соотношение их численности или массы.

Видовое разнообразие биоценоза характеризуется двумя показателями:

1) видовое богатство;

2) видовая насыщенность.

Пространственная структура

Пространственная структура характеризует распределение особей биоценоза в пределах биотопа.

Любой биоценоз занимает конкретное пространство, которое разделяется между видами в зависимости от их биологических особенностей. В связи с этим различают вертикальную и горизонтальную зональность, а также консорции.

Вертикальная зональность биоценоза обусловлена наличием в нем растений разной высоты. Благодаря этому в биоценозе наблюдается вертикальное расслоение на структурные части, занимающие разное положение по отношению к уровню почвы. Это явление называется ярусностью, а структурные части биоценоза - ярусами. Растительные ярусы заселяются животными и микроорганизмами. Ярусность способствует значительному ослаблению конкуренции между видами, благодаря этому увеличивается численность особей на единице площади и более полно и разнообразно используются условия среды.

Каждый биогеоценоз характеризуется видовым разнообразием, плотностью популяций каждого вида и биомассой — общим количеством живого органического вещества. Первичной продуктивностью биогеоценоза называется биомасса, синтезируемая растениями в единицу времени, а вторичной — биомасса, образуемая гетеротрофными организмами (консументами) в единицу времени.

Видовая структура - это количество видов, образующих биогеоценоз или экосистему, и соотношение их численностей. Формирование биогеоценоза осуществляется за счет межвидовых связей, которые определяют его структуру, т. е. упорядоченность строения и функци-нирования экосистемы. Различают видовую, пространственную и трофическую структуру биогеоценоза.

Под видовой структурой биогеоценоза понимают разнообразие в нем видов и соотношение численности или биомассы всех входящих в него популяций. Организмы разных видов обладают неодинаковыми требованиями к среде, поэтому в разных экологических условиях формируется неодинаковый видовой состав. Если биологические особенности какого-то вида резко отличаются в этом плане от других видов, то этот вид вследствие конкуренции выпадает из сообщества и входит в другой, соответствующий ему биогеоценоз. Другими словами, в каждом биогеоценозе происходит естественный отбор наиболее приспособленных к данным экологическим условиям организмов.

Различают бедные и богатые видами биогеоценозы. В полярных ледяных пустынях и тундрах при крайнем дефиците тепла, в безводных жарких пустынях, сильно загрязненных сточными водами водоемах сообщества крайне бедны видами, поскольку лишь немногие из них могут адаптироваться к таким неблагоприятным условиям. В тех же биотопах, где условия абиотической среды близки к оптимальным, наоборот, возникают чрезвычайно богатые видами сообщества (общее число видов живых организмов в таких экосистемах составляет от нескольких сотен до многих тысяч). Примерами могут служить влажные тропические леса, сложные дубравы, пойменные луга. Видовой состав молодых, формирующихся сообществ (например, молодые посадки сосны) обычно беднее сложившихся, зрелых.

Виды, преобладающие в биогеоценозе по численности особей или занимающие большую площадь, называют доминантами. Например, в наших лесах среди деревьев доминирует ель, в травяном покрове — кислица, зеленый мох, среди мышевидных грызунов — полевки и т. д. Однако далеко не все доминантные виды одинаково влияют на биогеоценоз. Среди них выделяются те, которые играют главенствующую роль в определении состава, структуры и свойств экосистемы путем создания среды для всего сообщества. Такие средообразующие виды называются эдификаторами. Основными эдификаторами (созидателями, строителями сообщества) наземных биогеоценозов являются растения; в лесах это ель, дуб, на низинных болотах — осоки, на верховых болотах — сфагновый мох.

Положение вида, которое он занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды называют экологической нишей вида.

Концепция экологической ниши оказалась очень плодотворной для понимания законов совместной жизни видов. Над ее развитием работали многие экологи: Дж. Гриннелл, Ч. Элтон, Г. Хатчинсон, Ю. Одум и др.

Понятие «экологическая ниша» следует отличать от понятия «местообитание». В последнем случае подразумевается та часть пространства, которая заселена видом и которая обладает необходимыми абиотическими условиями для его существования. Экологическая ниша вида зависит не только от абиотических условий среды, но и в не меньшей мере от его биоценотического окружения. Характер занимаемой экологической ниши определяется как экологическими возможностями вида, так и тем, насколько эти возможности могут быть реализованы в конкретных биоценозах. Это характеристика того образа жизни, который вид может вести в данном сообществе.

Г. Хатчинсон выдвинул понятия фундаментальной и реализованной экологической ниши. Под фундаментальной понимается весь набор условий, при которых вид может успешно существовать и размножаться. В природных биоценозах, однако, виды осваивают далеко не все пригодные для них ресурсы вследствие, прежде всего, конкурентных отношений.Реализованная экологическая ниша– это положение вида в конкретном сообществе, где его ограничивают сложные биоценотические отношения. Иными словами, фундаментальная экологическая ниша характеризует потенциальные возможности вида, а реализованная – ту их часть, которая может осуществиться в данных условиях, при данной доступности ресурса. Таким образом, реализованная ниша всегда меньше, чем фундаментальная.

13.

Понятие об экосистемах. Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называютэкосистемой. Термин был предложен в 1935 г. английским экологом А. Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты и мы не можем отделить организмы от конкретной окружающей их среды. А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.

Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений.Консументы– это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.

Структура является важнейшим свойством любой экосистемы Структуру понимают как внутреннее строение системы и определенные связи между его составляющими Всего в экологии различают пространственную и функциональную структуру экосистем Пространственная, или морфологическая, структура отражает состав, структурные соотношения и пространственное расположение структурных элементов или блоков экосистемы, которые определяют особливос те ее функционирования в определенных условиях среды Функциональная структура отражает особенности функционирования структурных компонентов экосистемы Она характеризует темпы, объемы и последствия вещественно-е нергетичного обмена, устойчивость и стабильность, производительность и другие важные функции экосистем (рис 21с. 2.1).

Рис 21 Перемещение вещества и энергии в экосистеме

Характеризуя функциональную структуру экосистем, следует обратить внимание на такие их функциональные признаки:

- усвоение и трансформация энергии;

- продуцирование органической массы;

- перемещение вещественно-энергетических ресурсов вдоль трофических (пищевых) цепей;

- деструкция мертвой органики и биотический круговорот (биогеохимические циклы);

- постоянная динамика, развитие и эволюция;

- саморегуляция, устойчивость и стабильность

Итак, несмотря на то, что экосистемы - открытые, целостные и устойчивые системы живых (автотрофных продуцентов, гетеротрофных консументов и редуцентов) и неживых (абиотических среда) компонентов, понятие я структуры экосистем можно определить как составляющие экосистем и пути их взаимодействий, обеспечивает сохранение единого целого Одной из важнейших признаков функциональной структуры экосистемы является ее трофич на строенийа.

Каждая экосистема имеет два основных компонента: организмы с одной стороны и факторы окружающей для них среды - с другой Вся совокупность организмов - это биота экосистемы Пути взаимодействия различных катег горий организмов - это биотическая структура экосистемы Несмотря на большое разнообразие экосистем, им всем присуща примерно одинакова биотическая структура, поскольку они содержат одни и те же категор ее организмов: продуценты, консументы, детритофаги и редуцентынти.

Изготовители (или автотрофы - те, которые питаются сами) - организмы, которые производят органическое вещество из неорганических соединений К категории продуцентов принадлежат большей частью зеленые растения, осуществляющие фот тосинтез, т.е. процесс превращения воды и углекислого газа на большие биомолекулы (белки, жиры, углеводы) с выделением кислорода как побочного продуктау.

Также в продуцентов принадлежит часть простейших, которые умеют улавливать энергию источников химических соединений на Земле, т.е. осуществляют хемосинтез Хемосинтез наблюдается у некоторых хемоавтотрофными бакте ерий, которые используют процесс окисления водорода, серы, сероводорода, аммиака, железа как источник энергии хемоавтотрофы в природных экосистемах играют относительно небольшую роль, исключением очень важны н итрификуючи бакії.

Автотрофы составляют основную массу всех живых существ и образуют всю новую органическое вещество в любой экосистеме, т.е. они являются производителями первичной продукции - продуцентами экосистем

Консументы (или гетеротрофы - те, которые питаются другими) - организмы, которые потребляют готовые органические вещества других организмов и продуктов их жизнедеятельности К этой категории относится подавляющее большинство видов животных, а также самые организмы от микроскопических бактерий до огромных синих китов и человеки.

Консументы (от лат consumo - ем) отличаются по структуре, способами и источниками питания, поэтому их делят на следующие подгруппы:

o Первичные консументы, или консументы первого порядка

- это животные, которые питаются непосредственно продуцентами Первичными консументами являются растительноядные животные, или фитофаги (тля, конек, гусь, олень, овца, слон и т.д.)

o Вторичные консументы, или консументы второго порядка, питаются первичными Например, кролик является первичным, а лиса - вторичные консументы К этой подгруппе относятся также консументы третьего и высших х порядков Консументы второго и высших порядков является плотоиднимы (или зоофагамы) Виды, которые употребляют как растения, так и животных, является всеяднымними.

o Симбиотрофы - это организмы, которые питаются соками или выделениями других организмов и выполняют при этом жизненно важные трофические функции К этой подгруппе относятся различные бактерии, грибы, найпри ростиши Например, мицелийни грибби

- микоризы, участвующие в корневом питании многих растений; микробы, населяющие сложные желудки жвачных животных и таким образом повышают перевариваемость и усвоение ими растительной пищи

детритофаги, или сапрофаги, - организмы, которые специализируются на питании мертвым органическим веществом - детритом

- и при этом выполняют функцию очистки экосистемы детритом называют мертвые растительные или животные остатки (опавшие листья, фекалии и т.п.) К этой категории организмов относятся земляные черви, термиты мурашки тощщо.

детритофаги, питающиеся трупами животных, называют некрофаги, это грифы, стервятники, вороны К некрофаги относятся некоторые крупные беспозвоночные (жук-мертвоедов, например, способен вдвоем с самкой зако опуваты трупы мышей на глубину до 20 см и там кормить ими своих личинок) всего различных детритофаги живет в почве, благодаря чему с мертвой органики (прежде всего, из корней растений) и формирует ться грунт При этом многие детритофаги одновременно являются хищниками, поскольку питаются \"бутербродами\" с мертвой органики и живых бакивих бактерій.

В водных экосистемах среди детритофаги по способу добычи и переработки пищи различают измельчителей, собирателей, фильтраторов В специальную экологическую группу детритофаги отделяют копрофагив, которые и питаются экскрементами Добывая пищу, они глотают донный осадок и пропускают его через свой кишечник Копрофагы способны непрерывно есть, поэтому их кишечник всегда содержит пищу, составляет ок изно треть общего веса тела животныхини.

Значительная часть детрита гниет и разлагается в процессе питания грибов и бактерий, поэтому грибы и бактерии объединяют в особую подгруппу детритофаги - редуцентов Именно они завершают деструктивную ро Оботе консументов и сапрофагам, доводя разложение органики до ее полной минерализации и возвращая в среду экосистемы последние \"порции\" двуокиси углерода, воды и минеральных элементех елементів.

Редуценты, или деструкторы, - это организмы, которые превращают органические остатки в неорганические соединения Они являются первичными детритофагами, которые, в свою очередь, служат пищей таким организмам, как простейшие, клещи, насекомые и черви, живущие в почве и воді.

Таким образом, несмотря на имеющееся многообразие, все экосистемы имеют структурное сходство Каждая экосистема имеет собственную материально-энергетическое обеспечение и определенную функциональную структуру Все названные вы ище категории организмов в любой экосистеме тесно взаимодействуют между собой, согласовывая потоки вещества и энергии их совместное функционирование не только поддерживает структуру и целостность биоценоза, но и имеет значительное влияние на абиотические компоненты биотопа, обусловливая при этом самоочищение экосистемы и ее средища.

Трофическую структуру биоценоза и экосистемыобычно отображают графическими моделями в виде экологических пирамид. Такие модели разработал в 1927 г. английский зоолог Ч. Элтон.

Экологические пирамиды— это графические модели (как правило, в виде треугольников), отражающие число особей (пирамида чисел), количество их биомассы (пирамида биомасс) или заключенной в них энергии (пирамида энергии) на каждом трофическом уровне и указывающие на понижение всех показателей с повышением трофического уровня.

Различают три типа экологических пирамид.

Пирамида чисел

Пирамида чисел(численностей) отражает численность отдельных организмов на каждом уровне. В экологии пирамида численностей используется редко, так как из-за большого количества особей на каждом трофическом уровне очень трудно отобразить структуру биоценоза в одном масштабе.

Чтобы уяснить, что такое пирамида чисел, приведем пример. Предположим, что в основании пирамиды 1000 т травы, массу которой составляют сотни миллионов отдельных травинок. Этой растительностью смогут прокормиться 27 млн кузнечиков, которых, в свою очередь, могут употребить в пищу около 90 тыс. лягушек. Сами лягушки могут служить едой 300 форелям в пруду. А это количество рыбы может съесть за год один человек! Таким образом, в основании пирамиды несколько сотен миллионов травинок, а на ее вершине — один человек. Такова наглядная потеря вещества и энергии при переходе с одного трофического уровня на другой.

Иногда случаются исключения из правила пирамид, и тогда мы имеем дело с перевернутой пирамидой чисел.Это можно наблюдать в лесу, где на одном дереве живут насекомые, которыми питаются насекомоядные птицы. Таким образом, численность продуцентов меньше, нежели консументов.

Пирамида биомасс

Пирамида биомасс -соотношение между продуцентами и консументами, выраженное в их массе (общем сухом весе, энергосодержании или другой мере общего живого вещества). Обычно в наземных биоценозах общий вес продуцентов больше, чем консументов. В свою очередь, общий вес консументов первого порядка больше, нежели консументов второго порядка, и т.д. Если организмы не слишком различаются по размерам, то на графике, как правило, получается ступенчатая пирамида с сужающейся верхушкой.

Американский эколог Р. Риклефс объяснял структуру пирамиды биомасс так: «В большинстве наземных сообществ пирамида биомасс сходна с пирамидой продуктивности. Если собрать все организмы, обитающие на каком-нибудь лугу, то вес растений окажется гораздо больше веса всех прямокрылых и копытных, питающихся этими растениями. Вес этих растительноядных животных в свою очередь будет больше веса птиц и кошачьих, составляющих уровень первичных плотоядных, а эти последние также будут превышать по весу питающихся ими хищников, если таковые имеются. Один лев весит довольно много, но львы встречаются столь редко, что вес их, выраженный в граммах на 1 м2, окажется ничтожным».

Как и в случае с пирамидами чисел, можно получить так называемую обращенную (перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньше, чем консументов, а иногда и редуцентов, и в основании пирамиды находятся не растения, а животные. Это касается в основном водных экосистем. Например, в океане при довольно высокой продуктивности фитопланктона общая масса его в данный момент может быть меньше, чем у зоопланктона и конечного потребителя-консумента (киты, крупные рыбы, моллюски).

Пирамида энергии

Пирамида энергииотражает величину потока энергии, скорость прохождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Все экологические пирамиды строятся по одному правилу, а именно: в основании любой пирамиды находятся зеленые растения, а при построении пирамид учитывается закономерное уменьшение от ее основания к вершине численности особей (пирамида чисел), их биомассы (пирамида биомасс) и проходящей через пищевые цени энергии (пирамида энергии).

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергии, согласно которому с одного трофического уровня на другой через пищевые цени переходит в среднем около 10 % энергии, поступившей на предыдущий уровень экологической пирамиды. Остальная часть энергии тратится на обеспечение процессов жизнедеятельности. В результате процессов обмена организмы теряют в каждом звене пищевой цепи около 90 % всей энергии. Следовательно, для получения, например, 1 кг окуней должно быть израсходовано приблизительно 10 кг рыбьей молоди, 100 кг зоопланктона и 1000 кг фитопланктона.

Общая закономерность процесса передачи энергии такова: через верхние трофические уровни энергии проходит значительно меньше, чем через нижние. Вот почему большие хищные животные всегда редки, и нет хищников, которые питались бы, к примеру, волками. В таком случае они просто не прокормились бы, настолько волки немногочисленны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]