- •Тема 1. Предмет, метод, организация и задачи статистики.
- •1.Предмет статистики
- •2. Метод статистики
- •3.Единая система учёта и статистики рб
- •4.Функции и задачи статистики.
- •5. Организация статистики в рб
- •Тема 2 . Статистические наблюдения
- •1. Статистическое наблюдение
- •2. Три формы организации наблюдения
- •3. Программно-методологические вопросы наблюдения.
- •4. Организация наблюдения.
- •5. Виды статистического наблюдения.
- •6. Источники и способы собирания данных
- •7. Организация статистической отчётности.
- •8. Контроль за данными и ошибки наблюдения
- •Тема 3. Группировки и сводка статистических данных. Статистические таблицы.
- •1. Статистическая сводка.
- •2. Группировки статистических данных.
- •3. Многомерная группировка
- •4. Вторичная группировка
- •5. Организация сводки
- •6. Статичстические таблицы
- •Тема 4. Абсолютные и относительные величины. Графическое изображение статистических данных.
- •1.Принцип построения статистических показателей.
- •2.Абсолютные величины.
- •3.Сущность относительных величин.
- •4.Виды относительных величин.
- •5. Понятие и основыне элементы графики.
- •6.Сравнительные диаграммы.
- •2.Столбиковые, скомбинированные группировкой показателей по 2-м признакам:
- •3.Полосовые (столбчатые, развёрнутые на 900):
- •7.Структурные диаграммы.
- •8.Динамические диаграммы
- •9.Изобразительные диаграммы
- •10.Картограммы и картодиаграммы.
- •Тема 5. Средние величины
- •1. Понятие и сущность средних величин.
- •2. Виды средних.
- •3. Свойства средней арифметической.
- •4. Другие виды средних.
- •Тема 6. Статистические распределения и их основные ха-ки.
- •1. Понятие о вариации признаков.
- •2. Ряды распределения.
- •3. Графическое изображение рядов распределения.
- •4. Показатели центра распределения.
- •5. Показатели вариации.
- •6. Дисперсия и её сво-ва.
- •7. Правило сложения дисперсий.
- •8. Законы вариации и коэффициент асимметрии.
- •Тема 7. Выборочное наблюдение.
- •1. Понятие о выборочном наблюдении.
- •2. Виды выборочного наблюдения.
- •3. Понятие об оценке параметров.
- •4. Требования к оценкам.
- •5. Доверительные интервалы и вероятности.
- •6. Ошибки случайной выборки.
- •7. Определение необходимой численности выборки.
- •8. Ошибка выборки при типическом отборе.
- •9. Ошибка выборки при серийном отборе.
- •10. Ошибка выборки при комбинированной выборке.
- •11 Ошибка выборки при малой выборке.
- •12. Распространение результатов выборки на генеральную совокупность.
- •Тема 8. Статистическое изучение корреляционных связей.
- •1. Понятие и задачи корреляции
- •2. Определение формы связи.
- •3. Измерение тесноты связи между признаками.
- •4. Выявление влияния отдельных факторов на изучаемый.
- •5. Множественная корреляция.
- •6. Применение корреляционного метода анализа связей.
- •Тема 9.Ряды динамики.
- •1.Понятие о рядах динамики (рд) и их виды.
- •2.Показатели ряда динамики (рд)
- •3.Средние показатели ряда динамики.
- •4. Приёмы анализа и обработки рядов динамики.
- •5. Измерение сезонности в явлениях.
- •6. Применение рядов динамики в прогнозировании
- •Тема 10. Индексы
- •1. Понятие об индексах.
- •3. Измерение результатов изменения признаков с несоизмеримыми элементами.
- •4. Изменение роли отдельных факторов в общей динамике показателей.
- •5. Определение влияния структуры явлений на изменение индексируемого признака.
- •6. Средние индексы (и)
- •7. Использование индексов в макроэкономических моделях (только индексы потребительских цен ипц)
- •Тема 11.Комплексное применение статист приемов и показателей.
- •1. Совместное использование статистических приёмов и показателей для решения различных задач
- •2. Статистические расчёты (ср)
- •3. Понятие статистико-математических моделей (смм).
4. Выявление влияния отдельных факторов на изучаемый.
Применение методов
корреляционного анализа даёт возможность
выражать связь между признаками
аналитически и придавать количественное
значение. К примеру, связь
между признаками может быть выражена
уравнением прямой:
.
В уравнении прямой х всегда известен,
поэтому нужно найти
и
,
представляющие собой среднее значение
некоторых показателей, принимаемые в
уравнении постоянными. Известно, что
параметр ао
является отрезком ординаты при х=0, а
а1=tg
угла наклона. Нахождение параметров
производится по способу выравнивания
наименьших квадратов. Линия связи должна
обладать основными сво-вами ср.арифм:
∑d=0,
∑d2=min;
если обозначить ординаты фактических
точек поля корреляции через yi,
а ординаты теоретических линий -
,
то второе условие можно записать так:
.
Это условие и лежит в основе способа
наименьших квадратов. Поскольку
,
то:
.
Вычислив первые производные по
и
от этой ф-ии и приравняв каждую из
производных к 0, мы сможем определить
те значения
и
при которых
будет минимальной. После преобразований
получим систему из 2ух уравнений: 1)
,
2)
.
Для нахождении
и
нужно найти ∑х, ∑у, ∑х2,
∑ху (данные берутся из представленной
таблицы). Подставляя значения из
предоставленной таблицы находим
и
,
затем эти значения подставляем в ур-ие
.
Параметры
и
также можно определить по формулам:
,
.
Связь между признаками прямая, поэтому нужно разработать мероприятие по усилению влияния фактора. Может быть криволинейная зависимость между признаками: парабола, гипербола. Способ решения будет аналогичен. Кроме парной корреляции можно вычислить зависимость одно признака от нескольких, т.е. мы будем иметь уравнение множественной регрессии.
5. Множественная корреляция.
Методология решения задач множественной корреляции: установление наличия связи, установление тесноты связи, формы связи, влияние отдельных факторов на общий результат. Отличительные особенности этой методологии: иногда приходится укрупнять единицы наблюдения (брать не рабочих, а бригады; не строительные управления, а тресты); численность исследуемой совокупности должна превосходить число факторов в 6-7 раз; должен быть тщательный отбор факторов и их содержательный анализ д/выбора уравнения связи. Д/этого вычисляют х, σ, σ2, v и коэфф-т тесноты связи. Существенным в составлении уравнения регрессии является выбор типа функции. Модель должна иметь математическое решение → её нужно выразить в форме одной из известных функций. Как и при парной корреляции, указание на функций можно получить из логического анализа предыдущего опыта, экспертных оценок, изучение исходных эмпирических данных. Чаще всего д/определения вида уравнения связи исп-ся способ перебора различных уравнений: большое число уравнений связи реализуется на ЭВМ с помощью специально разработанного алгоритма перебора с последующей проверкой, главным образом на основе критерия Стьюдента (очень трудоёмко).
Д/определения
тесноты связи при множественной
корреляции пользуются коэффициентом
множественной корреляции предварительно
вычислив парной корреляции. Если
х зависит от у и z,
то парные коэфф-ты вычисляют по формулам:
,
,
На их основе
вычисляют коэфф-т множественной
корреляции:

