
- •Введение
- •1. Общие сведения о датчиках физических величин
- •1.1. Основные характеристики датчиков
- •1.2. Классификация датчиков
- •2. Датчики деформации
- •2.1. Принцип действия
- •2.2. Конструкции тензодатчиков и их параметры
- •2.2.1. Конструкции металлических датчиков
- •2.2.2. Конструкции полупроводниковых датчиков
- •2.2.3. Основные параметры тензорезисторов
- •2.2.4. Тензодиоды и тензотранзисторы
- •2.3. Области применения и типы датчиков
- •Контрольные вопросы
- •3. Датчики температуры
- •3.1. Принцип действия
- •3.1.1. Термопары
- •3.1.2. Металлические термометры сопротивления
- •3.1.3. Термисторы
- •3.1.4. Позисторы
- •3.1.5. Измерение температуры с помощью диодов и транзисторов
- •3.2. Конструкции и параметры датчиков температуры
- •3.2.1. Термопары
- •3.2.2. Металлические термометры сопротивления
- •3.2.3. Термисторы
- •3.2.4. Позисторы
- •3.3. Области применения и типы датчиков
- •3.4. Термоанемометрический метод измерения скоростей потока газов и жидкостей
- •Контрольные вопросы
- •4. Твердотельные датчики газов
- •4.1. Принцип действия твердотельных датчиков газов
- •4.1.1. Термокондуктометрические датчики
- •4.1.2. Термохимические (каталитические) ячейки
- •4.1.3. Электрохимическая (топливная) ячейка
- •4.1.4. Полупроводниковые датчики газов
- •4.2. Конструкции и параметры датчиков
- •4.2.1. Термокондуктометрическая измерительная ячейка
- •4.2.2. Термохимическая (каталитическая) ячейка
- •4.2.3. Конструкция и параметры топливных элементов
- •4.2.4. Конструктивные и технологические особенности твердотельных датчиков газов
- •Контрольные вопросы
- •5. Датчики магнитного поля
- •5.1. Принцип действия
- •5.2. Преобразователи Холла
- •5.2.1. Технология изготовления и конструкции
- •5.2.2. Основные параметры и свойства
- •5.2.3. Применение преобразователей Холла
- •5.3. Полупроводниковые магниторезисторы
- •5.4. Магниторезисторы из ферромагнетиков
- •5.5. Магнитодиоды
- •5.6. Биполярные магнитотранзисторы
- •Контрольные вопросы
- •6. Оптические датчики
- •6.1. Принцип действия полупроводниковых приемников излучения
- •6.2. Основные характеристики фотоприемников
- •6.3. Фоторезисторы
- •6.3.1. Технология изготовления и конструкция
- •6.3.2. Характеристики и параметры
- •6.4. Фотодиоды
- •6.5. Полупроводниковые фотоэлементы
- •6.6. Фототранзисторы
- •6.7. Датчики ик-излучения
- •Контрольные вопросы
- •7. Датчики влажности
- •7.1. Единицы измерения влажности
- •7.2. Методы измерения влажности
- •7.3. Конденсационные датчики
- •7.4. Психрометрические датчики
- •7.5. Сорбционные датчики влажности
- •7.5.1. Кулонометрические датчики
- •7.5.2. Пьезосорбционные датчики
- •7.5.3. Импедансные датчики
- •Контрольные вопросы
- •8. Датчики микроэлектромеханических систем
- •Контрольные вопросы
- •Заключение
- •Библиографический список
Контрольные вопросы
1. Преимущества и недостатки измерения температуры с помощью термопар.
2. Из каких материалов изготавливаются металлические термометры сопротивления?
3. Перечислите основные параметры термисторов.
4. На каких физических явлениях основан принцип работы термисторов?
5. Что характеризует постоянная времени термистора?
6. На каких физических явлениях основан принцип работы позисторов, термодиодов, термотранзисторов?
4. Твердотельные датчики газов
Датчики газов широко используются во многих областях: от мониторинга загрязнения атмосферы до обнаружения взрывчатых веществ. Такие датчики необходимы для обеспечения безопасной работы в шахтах, на химических, металлургических производствах, для контроля утечек токсичных и взрывоопасных газов.
Для всех токсичных и взрывоопасных газов существуют значения предельно-допустимых концентраций (ПДК) для безопасной жизнедеятельности. ПДК измеряют в объемных и весовых процентах, в миллионных частях (1 ppm = 10-4 %), в миллиграммах на метр кубический. Обычно ПДК в 100 раз меньше смертельной дозы. Для большинства взрывоопасных газов нижний предел взрываемости составляет 2 % (пропан, бутан, ацетон) или 5 % (метан, метанол).
Принцип действия различных датчиков основан на изменении физических параметров газа в зависимости от его состава (теплопроводности, окислительной способности, тепла, выделяемого в каталитических реакциях); поверхностной проводимости полупроводниковой пленки вследствие адсорбции газа и на других эффектах.
4.1. Принцип действия твердотельных датчиков газов
4.1.1. Термокондуктометрические датчики
Принцип действия датчика основан на измерении изменения сопротивления чувствительного элемента датчика вследствие разности теплопроводности воздуха и контролируемого газа. Этот метод пригоден для измерения концентраций любых газов, заметно отличающихся по теплопроводности λ по сравнению с воздухом λ0 – таблица. Термокондуктометрические газоанализаторы (катарометры) особенно пригодны для анализа газов H2, He, CO2, SO2, а также для измерения вакуума, т.е. абсолютной концентрации газов безотносительно их состава. В качестве чувствительных элементов используются платиновые или полупроводниковые терморезисторы, работающие в режиме саморазогрева.
Теплопроводность газов при 100 ºС
Газ |
Теплопроводность λ, мкВт∙см-1∙К-1 |
Относительная теплопроводность λ/λ0 |
Воздух C6H6 бензол С4Н10 бутан NO2 He гелий Ne неон Kr криптон С6Н14 гексан С7Н16 гептан СО2 СН4 метан Н2 SO2 |
314 165 245 236 1740 571 116 202 176 223 442 2110 138 |
1,000 0,525 0,780 0,752 5,540 1,818 0,369 0,643 0,561 0,710 1,408 6,720 0,439 |
Изменение концентрации измеряемого компонента смеси, пропускаемой через камеру, где помещен терморезистор, приводит к изменению теплоотдачи и температуры терморезистора, что вызывает изменение его сопротивления. Теплопроводность газовых смесей подчиняется закону аддитивности, поэтому термокондуктометрические газоанализаторы пригодны для анализа только бинарных смесей, имеющих различие в коэффициентах теплопроводности. Для анализа трехкомпонентных газовых смесей используется различие температурных коэффициентов теплопроводности отдельных компонентов, для этого применяют два измерительных моста, находящихся в средах с различными температурами.