
- •11. Расчет внутреннего диаметра и выбор сортамента труб для трубопроводов
- •14 Определение рабочих нагрузок опор трубопроводов. Методика выбора пружин для подвесок. Характеристики пружин
- •17 Гидравлическое сопротивление трубопроводов. Основные зависимости и принципы расчетов
- •18 Категории трубопроводов тэс по Госгортехнадзору. Основные требования «Правил устройства и безопасной эксплуатации» по проектированию и устройству трубопроводов.
- •19 Соединения трубопроводов. Виды соединений. Детали и элементы разъемных соединений. Типы неразъемных соединений.
- •20 Ползучесть металла паропроводов. Основные характеристики процесса. Организация контроля ползучести металла на тэс.
- •21 Срок службы и расчетный ресурс паропровода – определения и зависимости
17 Гидравлическое сопротивление трубопроводов. Основные зависимости и принципы расчетов
Гидравлический расчет простого трубопровода производится с помощью уравнения Бернулли:
Здесь h1-2 – потери напора (энергии) на преодоление всех видов гидравлического сопротивления, приходящиеся на единицу веса движущейся жидкости.
ht – потери напора на трение по длине потока,
Σhм – суммарные потери напора на местном сопротивлении Потери напора на трение по длине потока определяются по формуле Дарси-Вейсбаха
где L –длина трубопровода,
d -диаметр участка трубопровода,
v - средняя скорость течения жидкости,
λ -коэффициент гидравлического сопротивления, в общем случае зависящий от числа Рейнольдса (Re=v*d/ν), и относительной эквивалентной шероховатости труб (Δ/d).
Значения эквивалентной шероховатости Δ внутренней поверхности различных труб представлены в таблице 2. А зависимости коэффициента гидравлического сопротивления λ от числа Re и относительной шероховатости Δ/d приведены в таблице 3.
Если режим движения ламинарный, то для труб некруглого сечения коэффициент гидравлического сопротивления λ определяется по частным для каждого случая формулам (табл. 4).
При развитом турбулентном течении с достаточной степенью точности при определении λ можно пользоваться формулами для круглой трубы с заменой диаметра d на 4 гидравлических радиуса потока Rг (d=4Rг)
Rг =w/c,
где w– площадь «живого» сечения потока,
c- «смоченный» его периметр (периметр «живого» сечения по контакту жидкость – твердое тело)
Потери напора в местных сопротивлениях определяются по формуле Вейсбаха
Где ς– коэффициент местного сопротивления, зависящий от конфигурации местного сопротивления и числа Рейнольдса.
При развитом турбулентном режиме ς= const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв, т.е. такой длины прямого трубопровода, для которого ht = hм. В этом случае потери напора в местных сопротивлениях учитываются тем, что к реальной длине трубопровода прибавляется сумма их эквивалентных длин
Lпр =L + Lэкв,
где Lпр – приведенная длина трубопровода.
Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.
Если движение жидкости в трубопроводе обеспечивается центробежным насосом, то для определения расхода в системе насос – трубопровод строится характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h1-2 + ∆z при z1< z2 и h1-2 - ∆z при z1>z2) накладывается на напорную характеристику насоса H=H(Q), которая приводится в паспортных данных насоса (см. рис.). Точка пересечения этих кривых указывает на максимально возможный расход в системе.
18 Категории трубопроводов тэс по Госгортехнадзору. Основные требования «Правил устройства и безопасной эксплуатации» по проектированию и устройству трубопроводов.
В зависимости от параметров (давления и температуры) транспортируемой среды станционные трубопроводы делятся на две основные группы – высокого и низкого давления. В целях унификации отдельных деталей и элементов станционных трубопроводов и обеспечения изготовления и поставки их специализированными заводами разработаны отраслевые стандарты на основные детали и элементы трубопроводов. Учитывая особенности условий работы и поставки трубопроводов, отраслевые стандарты выпускают отдельно для трубопроводов высокого и низкого давлений.
Все станционные трубопроводы должны отвечать требованиям соответствующих правил и норм, а также требованиям положений, технических условий, противоаварийных циркуляров и других нормативных документов. Одним из основных обязательных документов, определяющих правила проектирования станционных трубопроводов являются «Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды. ПБ 10-573-03».
Правила устанавливают требования к проектированию, конструкции, материалам, изготовлению, монтажу, ремонту и эксплуатации трубопроводов, транспортирующих водяной пар с рабочим давлением более 0,07 МПа (0,7 кгс/см2) или горячую воду с температурой свыше 115 град. С.
В соответствии с указанными правилами, трубопроводы пара и горячей воды, в зависимости от параметров транспортируемой среды, делятся на категории и группы.
В трубопроводах должны максимально использоваться стандартизированные детали и элементы по отраслевым стандартам и ГОСТ, допустимым для условий работы станционных трубопроводов. Требования этих документов обязательно должны учитываться, начиная со стадии выполнения проектной документации. Нормативные документы, правила, ОСТ, ГОСТ подвергаются периодическим пересмотрам, исправлениям и переизданиям, поэтому при проектировании трубопроводных систем, обязательно следует пользоваться актуальными материалами на момент их применения.