Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭСП_ 2014 / Конспект_ТЭСП_2012.doc
Скачиваний:
461
Добавлен:
29.05.2015
Размер:
2.87 Mб
Скачать

Проектирование и расчет осветительных сетей

Для выполнения осветительной сети в зависимости от её назначения и особенностей выполнения могут быть использованы различные виды электропроводок и различные элементы, входящие в её состав.

Открытой электропроводкой называется проводка, проложенная по поверхности стен, потолков, по фермам и другим строительным элементам зданий и сооружений, по опорам и т. п.

Скрытой электропроводкой называется проводка, проложенная внутри конструктивных элементов зданий и сооружений (в стенах, полах, фундаментах, перекрытиях, за непроходными подвесными потолками и т.д.).

Наружной электропроводкой называется электропроводка, проложенная по наружным стенам зданий и сооружений, под навесами и т. п., а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т. п. Наружная электропроводка может быть открытой и скрытой.

Струной как несущим элементом электропроводки называется стальная проволока, натянутая вплотную к поверхности стены, потолка и т. п„ предназначенная для крепления к ней проводов, кабелей или их пучков.

Полосой как несущим элементом электропроводки называется металлическая полоса, закрепленная вплотную к поверхности стены, потолка и т. п., предназначенная для крепления к ней проводов, кабелей или их пучков.

Тросом как несущим элементом электропроводки называется стальная проволока или стальной канат, натянутые в воздухе и предназначенные для подвески к ним проводов, кабелей или их пучков.

Коробом называется закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей. Короб служит защитой от механических повреждений проложенных в нем проводов и кабелей.

Лотком называется открытая конструкция, предназначенная для прокладки на ней проводов и кабелей. Лоток не является защитой от внешних механических повреждений, проложенных на нем проводов и кабелей. Лотки изготавливаются из несгораемых материалов.

Групповые линии сетей внутреннего освещения должны быть защищены предохранителями или автоматическими выключателями на рабочий ток не более 25 А.

Групповые линии, питающие газоразрядные лампы единичной мощностью 125 Вт и более, лампы накаливания до 42 В любой мощности и лампы накаливания напряжением выше 42 В единичной мощностью 500 Вт и более допускается защищать плавкими предохранителями или автоматическими выключателями на ток до 63 А. При этом ответвления от этих линий длиной до 3 м при любом способе прокладки и любой длины при прокладке в стальных трубах допускается не защищать аппаратами защиты.

Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, натриевых. В это число включаются также розетки.

Для групповых линий, питающих световые карнизы, панели и т. п., а также светильники с люминесцентными лампами, допускается присоединять до 50 ламп на фазу. Для линий, питающих многоламповые люстры, число ламп на фазу не ограничивается.

В жилых и общественных зданиях на однофазные группы освещения лестниц, этажных коридоров, холлов, технических подполий и чердаков допускается присоединять до 60 ламп накаливания, каждая из которых должна быть мощностью до 60 Вт.

В групповых линиях, питающих лампы мощностью 10 кВт и более, на каждую фазу должно присоединяться не более одной лампы.

На рис. 5 приведена типовая схема электропитания осветительной сети переменного тока от трансформаторной подстанции с первичным напряжением 6 или 10 кВ и вторичным – 380/220 В.

Ввод в помещение осуществляется наружной магистральной линией напряжением ~ 380/220 В, которая может быть воздушной или кабельной.

К вводному щиту помещения подключены по внутренним магистральным линиям (МЛ) осветительные и силовые щиты. В щитах устанавливают защитную и коммутирующую аппаратуру, в качестве которой используют автоматические выключатели, оснащённые соответствующими расцепителями, или комплекты предохранителей с выключателями.

Рисунок 5 - Схема электропитания осветительного щита

Рекомендуется, чтобы в каждой однофазной группе было не более 20 ламп накаливания, ДРЛ, ДРИ, ДНаТ и розеток, или не более 75 люминесцентных ламп мощностью до 40 Вт или 60 ламп мощностью до 80 Вт включительно. Длина четырёх проводной группы, как правило, не должна превышать 80 м, трёх проводной – 60 м и двухпроводной – 35 м.

Выбор марки провода для проводки осветительной сети определяется условиями окружающей среды, назначением помещения, электро – и пожаробезопасностью, удобством монтажа и эстетическими требованиями. Способ прокладки должен обеспечивать надежность, долговечность, пожарную безопасность, экономичность и по возможности заменяемость проводов.

Открытые электропроводки должны прокладываться в местах, где исключена возможность их механических повреждений. Открытая прокладка незащищенных изолированных проводов со сгораемой изоляцией запрещена. Нельзя применять плоские провода во взрывоопасных помещениях и с химически агрессивной средой, по сгораемым основаниям, для зарядки подвесных светильников, в зрительных залах, клубах, на чердаках и при открытой прокладке. При скрытой прокладке плоских проводов под штукатуркой запрещается заделка проводов растворами, содержащими поташ, милонаф и другие вещества, которые могут разрушать изоляцию.

В общественных, административных, бытовых, лабораторных помещениях, как правило, используют скрытые электропроводки. В производственных и вспомогательных помещениях следует преимущественно применять открытую проводку, выполненную на тросах или тросовыми проводами, кабелями, шнурами и изолированными проводами с размещением на изоляторах, в лотках, коробах, трубах.

Сечения проводов и кабелей выбирают исходя из механической прочности, тока нагрузки и потери напряжения.

В процессе монтажа и эксплуатации электрические провода и кабели испытывают механические нагрузки, которые могут привести к обрыву токоведущих жил. Чтобы этого не произошло, ПУЭ ограничивает минимальное сечение проводов в зависимости от способов прокладки и материала токоведущих жил. Например, согласно ПУЭ в общем случае сечение жил проводов и кабелей, используемых для внутренней электропроводки, должно быть не менее 2,5 мм2 для алюминиевых жил и 1 мм2 для медных, а при прокладке на изоляторах — соответственно 4 мм2 и 1,5 мм2.

Нагрев проводников вызывается прохождением по ним электрического тока. Температура провода зависит от величины этого тока и условий теплоотдачи в окружающую среду. Допустимая температура провода ограничивается классом нагревостойкости его изоляции. Чтобы температура не превысила допустимого значения, в зависимости от класса изоляции, материала жилы провода и способа его прокладки (в воздухе, в трубе, в строительной конструкции, в земле и т. д.), для каждого стандартного сечения согласно табличным данным, приводимых в ПУЭ, ограничивают допустимую силу рабочего тока.

В таблице 1 приведены значения длительно допустимых токов нагрузки (А) для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными (числитель) и алюминиевыми жилами (знаменатель), проложенными открыто и в одной трубе. Такой способ прокладки электропроводки производственных осветительных сетей является наиболее распространённым и достаточно общим для принятия токовых нагрузок в целом при других способах прокладки.

Таблица 1 - Длительно допустимые токи нагрузки (А) для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медны-ми (числитель) и алюминиевыми жилами (знаменатель)

Сечение токоведущей жилы,

мм2

Провода, проложенные открыто

Токовые нагрузки, А

Провода, проложенные в одной трубе

два одножильных

три одножильных

четыре одножильных

1

17/-

16/-

15/-

14/-

1,5

23/-

19/-

17/-

16/-

2,5

30/24

27/20

25/19

25/19

4

41/32

38/28

35/28

30/23

6

50/39

46/36

42/32

40/30

10

80/55

70/50

60/47

50/39

16

100/80

85/60

80/60

75/55

25

140/105

115/80

100/80

90/70

35

170/130

135/100

125/95

115/85

50

215/.165

185/140

170/130

150/120

70

270/210

225/175

210/165

185/140

95

330/255

275/215

255/200

225/175

120

385/295

315/245

290/220

260/200

150

440/340

360/275

330/255

-

Таким образом, на основании максимального расчётного тока нагрузки (Iр) на рассматриваемом участке сети по табличным данным ПУЭ находится минимально возможное сечение жилы провода (s) из условия его допустимого нагрева, чтобы выполнялось условие:

Iр £ Iд , (1)

где Iд – максимально возможный допустимый ток нагрузки на провод с выбранным минимальным сечением токопроводящей жилы, А;

Iр – максимальный расчётный ток нагрузки на рассматриваемом участке сети (А), который для осветительных сетей с учётом значения коэффициента спроса, равного единице, рассчитывается по максимальной расчётной (установленной) мощности осветительных установок (Ру, Вт) и средневзвешенному коэффициенту мощности (cos j) c учётом фазности (m) электропитания на данном участке:

Iр = Ру /(mUФ cos j), (2)

где UФ – фазное напряжение на рассматриваемом участке сети, В.

Рисунок 6 - Расчётная схема осветительной сети

С другой стороны, потеря напряжения в проводах зависит от сечения, материала токоведущей жилы, длины провода, силы тока и принятой системы напряжения. Обычно, значение допустимой потери напряжения во внутренней осветительной сети принимается до 2,5 % от номинального, чтобы обеспечить требуемый уровень напряжения у всех потребителей данной сети, рис.5, 6.

Расчет сечения проводов по допустимой потере напряжения производят по формуле:

, (3)

где P i×l iэлектрический момент нагрузки i – го участка сети, кВт×м; P i – суммарная мощность нагрузки i – го участка сети, кВт; l i длина i – го участка сети, м; DU i – принимаемая потеря напряжения на i – м участке сети, %; С – коэффициент, значение которого зависит от напряжения сети, материала токоведущей жилы и числа проводов в группе данного участка, табл. 2; cos j - средневзвешенный коэффициент мощности нагрузки.

Таблица 2

Номинальное напряжение (В) и система электросети

Значение коэффициента С, (кВт×м)/(мм2×%)

медная жила

алюминиевая жила

380 (3 фазы)

72

44

380/220 (3фазы+N)

72

44

380/220 (2фазы+N)

32

19,5

220 (однофазная)

12

7,40

127 (однофазная)

4

2,46

36 (однофазная)

0,324

0,198

24 (однофазная)

0,144

0,088

12 (однофазная)

0,036

0,022

Таким образом, сечения жил проводников на каждом участке осветительной сети определяется током нагрузки (допустимым нагревом) и допустимой потерей напряжения, принятой на данном участке при расчёте по формуле (3). При этом сечение жилы провода должно быть больше или равно сечению, допустимому по условию механической прочности.

В качестве примера запишем формульные выражения для расчёта сечения жилы проводов по допустимой потере напряжения для ввода в щит освещения (Sв) и для магистрали (Sм) на основании расчётной схемы рис.6.

Для этого, исходя из реальной длины участка и значения нагрузки на данном участке сети, следует задаться расчётными значениями потерь напряжения на этих участках DUввод и DUмаг таким образом, чтобы суммарная потеря напряжения (DUввод + DUмаг + DUотв ) не превышала допустимого значения для внутренней проводки, равного DUдоп = 2,5 % от Uн.

В результате для схемы рис.6 получим следующие выражения для заданных участков сети:

Полученные расчётные сечения проводов округляют до ближайших больших (равных) стандартных сечений.

Следующим этапом по справочным таблицам допустимых токовых нагрузок на соответствующие изолированные провода и кабели по расчётному току участка сети определяют необходимое стандартное сечение жилы, исходя из допустимого нагрева провода или кабеля.

Окончательно на каждом участке сети из двух определённых сечений принимается то сечение жилы, которое окажется большим. В этом случае удовлетворяются требования как по допустимой потере напряжения, так и по допустимой токовой нагрузке.

После чего на основании выражения (3), решённого относительно (DU), уточняют действительные потери напряжения на каждом из участков сети и в целом во внутренней проводке помещения. При равномерной нагрузке на участке она может быть заменена суммарной, приложенной в середине участка.

Осветительные щиты выбираются в зависимости от количества групп, схемы соединения, аппаратов управления и защиты, а также по условиям среды, в которых они будут работать. Для сельскохозяйственных объектов рекомендуются щиты типов ОЩВ, ОП с плавкими предохранителями или автоматическими выключателями (автоматами) типа А-3161, АБ-25 и др.

Ток уставки аппарата защиты (предохранителя, автомата) определяется из условия

³ Iр , (4)

где — расчетный ток нагрузки участка линии, защищаемого данным аппаратом защиты, А.

Автоматические выключатели имеют, как правило, комбинированные расцепители: тепловой и электромагнитный. При малых токах короткого замыканиях они отключают линию с некоторой временной задержкой за счёт срабатывания теплового расцепителя, которому необходимо определённый интервал времени нагрева. При значительных токах короткого замыкания срабатывает электромагнитный расцепитель (отсечка) и автоматический выключатель отключает аварийный участок сети практически мгновенно.

Номинальные токи аппаратов защиты должны быть не менее расчетных токов защищаемых участков, по возможности близкими к ним и не должны отключать установку при включении ламп. Для этого номинальные токи плавких вставок предохранителей и уставок автоматических выключателей с учетом пусковых токов мощных ламп накаливания и ламп ДРЛ, ДРИ, ДНаТ относительно рабочего тока линии, как правило, завышают в 1,4 раза (для автоматов с комбинированными расцепителями на ток менее 50 А, а также для нагрузки с лампами накаливания) и в 1,2 раза (для ламп типа ДРЛ, ДРИ, ДНаТ с защитой сети плавкими предохранителями).

Лекция 14.

Соседние файлы в папке ТЭСП_ 2014