Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Poyasnitelnaya_zapiska_po_PiAKhTiZOS_1.docx
Скачиваний:
174
Добавлен:
28.05.2015
Размер:
370.78 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Тольяттинский государственный университет

Кафедра «Химии, химические процессы и технологии»

Курсовой проект по процессам и аппаратам химической технологии

Студентка: Тутукова К.В.

Группа: ЗОСб-1201

Преподаватель: Орлов Ю.Н.

Вариант № 22

г.Тольятти 2014

Содержание:

Задание на курсовой проект

Введение

  1. Расчёт установки обратного осмоса;

    1. Степень концентрирования на ступени обратного осмоса;

    2. Выбор рабочей температуры и перепада давления через мембрану;

    3. Выбор мембраны;

    4. Приближенный расчет рабочей поверхности мембран;

    5. Выбор аппарата и определение его основных характеристик ;

    6. Секционирование аппаратов в установке;

    7. Расчёт наблюдаемой селективности мембран;

    8. Уточненный расчёт поверхности мембран;

    9. Расчёт гидравлического сопротивления

  2. Расчёт выпарной установки

    1. Определение поверхности теплопередачи выпарных аппаратов.

    2. Концентрации упариваемого раствора

    3. Температуры кипения растворов

    4. Полезная разность температур

    5. Определение тепловых нагрузок

    6. Выбор конструкционного материала

    7. Расчёт коэффициентов теплопередачи

    8. Распределение полезной разности температур

    9. Уточненный расчёт поверхности теплопередачи

Список использованной литературы

Задание:

Спроектировать установку для концентрирования L кг/с сточных вод, содержащих минеральные примеси, от концентрации 0,8% до 20% (масс.). первичное концентрирование провести обратным осмосом, окончательное - выпариванием. Содержание примеси в пермеате не должно превышать 10% от её количества, содержащегося в сточной воде. Количество выпарных аппаратов в установке - 2. Коэффициент теплопроводности сточных вод равным коэффициенту теплопроводности воды, значение теплоемкости рассчитать по формуле: с=св (1-x), где св- теплоёмкость воды, x-концентрация примеси, масс.доли.

Хлорид аммония NH₄Cl — соль аммония, белый кристаллический слегка гигроскопичный порошок без запаха. 

Формула: NH4Cl

Молярная масса: 53,491 г/моль

Плотность: 1,53 г/см³

Температура плавления: 338°C

Растворимость: Вода

Введение

Установка обратного осмоса:

Мембранные методы разделения жидких и газообразных сред заняли прочное место в арсенале промышленных технологических процессов, хотя полное становление и отдача мембранной науки и технологии ожидается в ХХI веке. Существуют области, где мембранная технология вообще не имеет конкурентов. Значение мембранной технологии в последние годы резко возросло прежде всего как технологии, способной навести мост через пропасть, разделяющую промышленность и экологию.

Глобальный характер воздействия и влияния мембранной технологии на реализацию российских и мировых научно-технологических приоритетов в последнее время получил свое дальнейшее подтверждение.

Мембранные процессы перестали сегодня быть только предметом узкого интереса небольших групп ученых и специалистов в академических институтах и высших учебных заведениях. О мембранных методах разделения и очистки сейчас можно услышать по телевизору и прочесть в газетах. Мембранами интересуются медики и биологи, специалисты пищевой промышленности и сельского хозяйства. Легче указать сферы, в которых мембраны не используются, чем перечислить все области их применения. Ежегодно в мире появляются ряд монографий по разным методам мембранного разделения. Многочисленные конференции по мембранам публикуют свои материалы.

Среди мембранных методов разделения жидких смесей важное место занимают обратный осмос и ультрафильтрация. В последние годы их начали применять для опреснения соленых вод, очистки сточных вод, получения воды повышенного качества, концентрирования технологических растворов в химической, пищевой, микробиологической и других отраслях промышленности. Обратный осмос основан на фильтровании растворов под давлением, превышающим осмотическое, через полупроницаемые мембраны, пропускающие растворитель, но задерживающие растворенные вещества (низкомолекулярные (три обратном осмосе).

Разделение проходит при температуре окружающей среды без фазовых превращений, поэтому затраты энергии значительно меньше, чем в большинстве других методов разделения (таких как ректификация, кристаллизация, выпаривание и др.).

Малая энергоемкость и сравнительная простота аппаратурного оформления обеспечивают высокую экономическую эффективность указанного процесса.

При проведении обратного осмоса получают два раствора: оретант обогащении растворенными веществами, другой пермеат обеднен ими. Если каждый из этих растворов является готовым продуктом (например, пермеат - чистая вода, приходная для использования на производстве), обратный осмос может быть единственным массообменным процессом в схеме разделения.

Однако на практике чаше встречаются случае, когда концентрат должен подвергаться более значительному концентрированию, чем может обеспечить обратный осмос, либо пермеат требует более глубокой очистки.

Говоря о применении обратного осмоса, нельзя не упомянуть о том, что как единственно необходимый процесс он используется при решении ограниченного числа задач – например, при получении питьевой воды из природных вод, где концентрат может сбрасываться в тот же водоем, откуда забирается вода.

В большинстве же случаев наибольшая эффективность достигается при сочетании обратного осмоса с другими методами разделения. Так, при концентрировании растворов целесообразно бывает на первой стадии использовать обратный осмос, а окончательное концентрирование провести выпариванием. При получении особо чистой воды пермеат со стадии обратного осмоса обычно направляется на ионный обмен, где вода окончательно очищается от солей.

Описание установки

Технологическая схема установки представлена на рисунке 1.

Рисунок 1 – Технологическая схема установки для концентрирования растворов с применением обратного осмоса:

1 – емкость для исходного раствора; 2 – насос низкого давления; 3 – фильтр; 4 – насос высокого давления; 5 – аппараты обратного осмоса

Принцип действия установки

Исходный раствор неорганической соли из емкости 1 подается насосом 2 на песочный фильтр 3, где очищается от взвесей твердых частиц. Далее раствор насосом высокого давления 4 подается в аппараты обратного осмоса 5, где его концентрация повышается в несколько раз.

Выпарная установка:

Выпаривание – это процесс концентрирования растворов твердых нелетучих веществ путем частичного испарения растворителя при кипении жидкости.

Выпариванию подвергают растворы твердых веществ (водные растворы щелочей, солей и др.), также высококипящие жидкости, обладающие при температуре выпаривания весьма малым давлением пара, – некоторые минеральные и органические кислоты, многоатомные спирты и др. Выпаривание иногда применяют также для выделения растворителя в чистом виде: при опреснении морской воды выпариванием образующийся из нее водяной пар конденсируют и воду используют для питьевых или технических целях.

При выпаривании обычно осуществляется частичное удаление растворителя из всего объема при его температуре кипения. Поэтому выпаривание принципиально отличается от испарения, которое, как известно, происходит с поверхности раствора при любых температурах ниже температурах кипения. В ряде случаев выпаренный раствор подвергают последующей кристаллизации в выпарных аппаратах, специально приспособленных для этих целей.

Для нагревания выпариваемых растворов до кипения используют топочные газы, электрообогрев и высокотемпературные теплоносители, но наибольшее применение находит водяной пар, характеризующийся высокой удельной теплотой конденсации и высоким коэффициентом теплоотдачи.

Процесс выпаривания проводится в выпарных аппаратах. По принципу работы выпарные аппараты разделяются на периодические и непрерывно действующие.

Периодическое выпаривание применяется при малой производительности установки или для получения высоких концентраций. При этом подаваемый в аппарат раствор выпаривается до необходимой концентрации, сливается и аппарат загружается новой порцией исходного раствора.

В установках непрерывного действия исходный раствор непрерывно подается в аппарат, а упаренный раствор непрерывно выводится из него.

Наибольшее применение в химической технологии нашли выпарные аппараты поверхностного типа, особенно вертикальные трубчатые выпарные аппараты с паровым обогревом непрерывного действия.

В зависимости от режима движения кипящей жидкости в выпарных аппаратах их разделяют на аппараты со свободной, естественной и принудительной циркуляцией, пленочные выпарные аппараты, к которым относятся и аппараты роторного типа.

В данном проекте используется аппарат с естественной циркуляцией, с вынесенной греющей камерой и трубой вскипания. В этом аппарате циркуляция раствора осуществляется за счет различия плотностей в отдельных точках аппарата. Выпариваемый раствор, поднимаясь по трубам, нагревается и по мере подъема вскипает. Образовавшаяся парожидкостная смесь направляется в сепаратор, где происходит разделение жидкой и паровой фаз.

В таких аппаратах облегчается очистка поверхности от отложений, т.к. доступ к трубам легко осуществляется при открытой верхней крышке греющей камеры.

Области применения выпарных аппаратов

Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объёме аппарата и расходе металла на его изготовление, простота устройства, надёжность в эксплуатации, легкость очистки поверхности теплообмена, удобство осмотра, ремонта и замены отдельных частей.

Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами выпариваемого раствора (вязкость, температурная депрессия, кристаллизируемость, термическая стойкость, химическая агрессивность и др.)

Как указывалось, высокие коэффициенты теплопередачи и большие производительности достигаются путём увеличения скорости циркуляции раствора. Однако одновременно возрастает расход энергии на выпаривание и уменьшается полезная разность температур, т.к. при постоянной температуре греющего пара с возрастанием гидравлического сопротивления увеличивается температура кипения раствора. Противоречивое влияние этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]