
- •1 Стратегия развития отечественной энергетики.
- •2 Выбор числа и мощности трансформаторов на подстанции. Нагрузочная способность.
- •3 Системы отопления, вентиляции, горячего водоснабжения и пароснабжения предприятий. Их назначение. Режимы работы. Требуемые параметры тепла.
- •2.5. Паровые системы теплоснабжения
- •4 Выбор электрических аппаратов, изоляторов, электрических проводов по условиям рабочего (нормального) режима.
- •5 Энергетические обследования и энергоаудит объектов теплоэнергетики и теплотехнологий: задачи, виды, нормативная база.
- •5 Нормативно-правовая и нормативно-техническая база энергосбережения.
- •6 Суточные и сменные графики теплопотребления. Методика определения максимальных, средних и годовых потребностей в теплоте каждым типом потребителей.
- •7 Теплопроводность через плоские, цилиндрические, 1-слойные и многослойные стенки.
- •7 Теплопередача через плоские и цилиндрические стенки. Термическое сопротивление теплопередачи через плоские и цилиндрические стенки. Коэффициент теплопередачи; интенсификация теплопередачи.
- •Цилиндр стенки
- •8 Методы определения потребностей промышленных предприятий в теплоте пара и горячей воды
- •8 Методы регулирования отпуска теплоты из систем централизованного теплоснабжения.
- •9Защита линий электрических сетей от токов коротких замыканий.
- •10 Сушильные установки: назначение, устройство и принцип работы.
- •11 Защита от атмосферного электричества сельскохозяйственных предприятий.
- •12 Теплообменные аппараты: назначение, классификация и принцип работы.
- •13 Классификация, свойства и характеристики теплоносителей.
- •14 Кабельные линии, конструкции, преимущества.
- •15 Магистральные и радиальные схемы электроснабжения сельскохозяйственных предприятий.
- •16 Как проводится консервация котла и выполняется защита от стояночной коррозии?
- •17 Проектирование проводок в производственных и общественных зданиях.
- •18 Виды и краткая характеристика потерь энергии и ресурсов в тепловых сетях.
- •19 Приемники электрической энергии, их основные характеристики.
- •20 Энергосбережение в котельных.
- •21 Вторичные энергоресурсы промпредприятий, используемые для генерации теплоты. Их количество, параметры, доля полезного использования в системах теплоснабжения.
- •22. Выбор сечения проводниковой арматуры (проводов, кабелей и шин) в электрических сетях.
- •24 Компрессорные машины. Назначение, область применения.
- •26 Виды электрических сетей.
- •27 Рабочий процесс газотурбинных установок (гту).
- •28 Надежность электроснабжения сельских потребителей.
- •29 Классификация газотурбинных установок.
- •31 Паровые турбины и их классификация.
- •32 Ректификационные установки: назначение, устройство и принцип работы.
- •33 Назначение, роль и место тепловых двигателей и нагнетателей.
- •34 Автоматизация и дистанционные управления – как средство повышения безопасности труда.
- •35 Параметры состояния газа. Уравнение состояния идеального газа. Первый закон термодинамики. Основные процессы идеального газа.
- •36 Абсорбционные установки: назначение, устройство и принцип работы.
- •37 Различия между идеальным газом и реальными газами. Фазовые переходы. Основные процессы с водяным паром. Использование водяного пара в технике.
- •38 Выпарные аппараты: назначение, устройство и принцип работы.
- •39 Газовые смеси. Влажный воздух и его параметры. Изображение на h-d диаграмме процессов сушки в конвективной сушилке и кондиционирования воздуха.
- •40 Качество электрической энергии.
- •41 Мероприятия по снижению потерь мощности и электроэнергии.
- •42 Равновесие капельной жидкости, движущейся прямолинейно и вращающейся вокруг вертикальной оси.
- •3.8. Равномерное вращение сосуда с жидкостью
- •43 Построение годового графика активной мощности.
- •44 Теория физического подобия. Три теоремы теории подобия. Критерии гидродинамического подобия.
- •45 Регулирование напряжения в электрических сетях.
- •46 Виды и образование скачков уплотнений. Уравнения скачков уплотнений.
- •47 Общие принципы энергосбережения в зданиях и сооружениях.
- •1 Бытовое энергосбережение
- •2 Структура расхода тепловой и электрической энергии зданиями
- •3 Тепловая изоляция зданий и сооружений
- •4 Совершенствование теплоснабжения. Тепловая изоляция трубопроводов.
- •5 Изоляционные характеристики остекления и стеклопакеты
- •48 Уравнение Бернулли для элементарной струйки идеальной жидкости. В чем состоит геометрический и энергетический смысл уравнения Бернулли.
- •49 Учет энергоресурсов: принципы и требования, предъявляемые к приборам учета тепловой и электрической энергии.
- •50 Поясните основные характеристики газовых потоков: число Маха, коэффициент скорости. Безразмерную скорость.
- •51 Смесительные аппараты: назначение, устройство и принцип работы.
- •53 Закон Фурье; коэффициент теплопроводности. Термическое сопротивление теплопроводности.
- •54 Классификация и параметры паровых и водогрейных котельных. Принцип выбора основного и вспомогательного оборудования.
- •55 Назначение и классификация тэц, используемых в системах теплоснабжения. Принципиальные тепловые схемы тэц.
- •57 Теплообменные аппараты. Уравнения теплового баланса и теплопередачи; средняя разность температур между теплоносителями. Расчет прямоточных и противоточных теплообменников.
- •12.5.Конструкторский и поверочный расчёт теплообменных аппаратов
- •58 Методы анализа травматизма и заболеваемости. Их показатели и прогнозирование.
- •59 Свободная и вынужденная конвекции; физические свойства жидкостей. Числа (критерии) подобия конвективного теплообмена.
- •60 Энергетические, экологические и экономические показатели котельных.
- •62 Требования безопасности к конструкции и эксплуатации теплотехнического оборудования.
- •63 Коэффициент теплофикации и определение его оптимального значения. Использование пиковых водогрейных котлов.
- •64 Назовите основные задачи обслуживания паровых и водогрейных котлов.
- •65 Котельные - основной источник генерации теплоты в системах теплоснабжения. Производственные и отопительные котельные. Их назначение и области рационального использования.
- •66 Требования безопасности к конструкции и эксплуатации сосудов, работающих под давлением.
- •67 Изоляционные конструкции теплопроводов. Методика их теплового расчета. Определение тепловых потерь участка тепловой сети и падения температур теплоносителя по их длине.
- •68 Технические средства безопасности, виды и защита работающих.
- •69 Лучистый теплообмен; законы Планка, смещения Вина, Стефана-Больцмана. Степень черноты тела; закон Кирхгофа и следствие из него.
- •70 Рекуперативные аппараты: назначение, устройство и принцип работы.
3.8. Равномерное вращение сосуда с жидкостью
Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему вращение с постоянной угловой скоростью ω вокруг его вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее изменится.
В центральной части уровень жидкости опустится, у стенок она поднимется, и вся свободная поверхность жидкости станет поверхностью вращения (рис.3.13).
На жидкость будут действовать две массовые силы: единичная сила тяжести Fg = g и единичная центробежная сила Fцб = ω2r.
Проекции этих сил на оси координат дадут следующие выражения
X
= (V2/r) Cos(r^x) = ω2r
Cos(r^x)= ω2X
Y = (V2/r) Cos(r^y) = ω2r Cos(r^x)= ω2Y, Z = -g
Подставляя это выражение в выражение для дифференциала давления
dp = ρ(Xdx + Ydy + Zdz),
Получим
dp = ρω2 (Xdx + Ydy) –ρ gdz,
вынеся знак дифференциала за скобки, получим
dp = ρ(ω2/2)d(X2 + Y2) –ρ gdz,
после интегрирования получим выражение для определения давления в любой точке
p = ρ(ω2/2) (X2 + Y2) –ρ gz + С,
полагая в этом выражении Р – const, получаем уравнение изобарических поверхностей
ρ(ω2/2) (X2 + Y2) – ρgz + С1 = 0.
Это будут конгруэнтные параболоиды вращения с осью Oz. Один из этих параболоидов – свободная поверхность жидкости.
Обозначив через z0 координату вершины параболоида свободной поверхности, получим x = y = 0, откуда С1 = ρgz0,
ρ(ω2/2) (X2 + Y2) – ρgz + ρgz0 = 0
и уравнение поверхностей уровня свободной поверхности получит вид
Z
–Z0 = (ω2/2) (x2 + y2)(3.27)
Уравнение свободной поверхности получит вид
ZП
–Z0. (3.28)
Если внешнее давление равно Р0 то, задав в уравнении для давления Р = Р0, x=y=0, z = z0 , находим постоянную С = Р0 + ρg z0. Тогда закон распределения давления выразится формулой
(3.29)
Пользуясь этими уравнениями можно определить положение свободной поверхности в сосуде, максимальную высоту Н подъема жидкости и высоту z0 = h расположения вершины параболоида при данной угловой скорости ω. Для этого необходимо использовать еще уравнение объемов: объем неподвижной жидкости равен её объему во время вращения.
На практике часто рассматривается вращение сосуда с жидкостью, когда угловая скорость ω столь велика, что силой тяжести можно пренебречь по сравнению с центробежными силами. При этом закон изменения давления в жидкости легко получить из формулы (3.29), в которой следует принять g(z0 - z) = 0.
Поверхности уровня примут вид цилиндров с общей осью - осью вращения сосуда. Если сосуд не был заполнен перед началом вращения, давление Р0 будет действовать не в центре, а при r = r0, вместо выражения (3.29) будем иметь
Р = Р0 + ρ ω2 (r —r2)/2g, (3.30)
43 Построение годового графика активной мощности.
Годовой
график нагрузки может быть построен
аналогично суточному графику, т. е. по
средним мощностям, но не за 30, 60 мин, а
за месяц (рис. 3, а).
Рис. 3. Годовой график изменения активной мощности: а – по средним месячным мощностям; б – по продолжительности
Чаще строят годовые графики по продолжительности. Такой график представляет собой кривую изменения убывающей нагрузки в течение года (8760 час). Годовой график по продолжительности (рис. 3, б) можно построить по годовому графику, построенному по средним месячным мощностям (рис. 3, а) или двум характерным суточным графикам нагрузки за зимние и летние сутки.
При этом условно принимают, что продолжительность зимнего периода 213 суток или 183 суток, а летнего – 152 или 182 суток в зависимости от климатического района, в котором находится промышленное предприятие. На рис. 4 показаны графики электрической нагрузки: годовой график по продолжительности (рис. 4, в), построенный на основании суточных графиков – зимнего (рис. 4, а) и летнего (рис. 4, б).
Рис. 4. Графики электрических нагрузок: а – суточный зимнего периода; б – суточный летнего периода; в – годовой график по продолжительности
Построенный годовой график по продолжительности еще называют упорядоченным графиком, т.к. он построен по порядку убывающих ординат. Ступенчатый график с ломаной линией изменяющейся нагрузки можно заменить графиком с плавно изменяющейся кривой, но при этом площадь, ограниченная ломаной или плавной кривой и осями координат, должна оставаться постоянной.