
- •Твердотільна електроніка
- •Передмова
- •1 Елементи фізики напівпровідників та електронно-діркових переходів
- •1.1 Загальні відомості про напівпровідники
- •1.1.1 Власна електропровідність напівпровідників
- •1.1.2 Електронна провідність напівпровідників
- •1.1.3 Діркова провідність напівпровідників
- •1.1.4 Рекомбінація носіїв заряду та тривалість їх життя
- •1.1.5 Види струмів у напівпровідниках
- •1.2 Електронно - дірковий перехід та фізичні процеси в ньому
- •Пряме включення переходу
- •Зворотне включення переходу
- •1.2.4 Теоретична вольт-амперна характеристика
- •1.2.5 Параметри переходу
- •Товщина переходу
- •Ємності переходу
- •1.2.6 Реальна вах переходу
- •Пряма гілка вах
- •Зворотна гілка вах
- •1.3 Різновиди електричних переходів та контактів
- •1.3.1 Гетеропереходи
- •1.3.4 Контакти металу з напівпровідниками
- •1.3.5 Омічні контакти
- •2 Напівпровідникові діоди
- •2.1 Класифікація та система позначень діодів
- •2.2 Випрямні діоди
- •Параметри випрямних діодів
- •2.3 Напівпровідникові стабілітрони
- •2.4 Універсальні діоди
- •2.5 Імпульсні діоди та перехідні процеси в них
- •2.6 Тунельні та обернені діоди
- •2.7 Варикапи
- •2.8 Діоди Шотткі
- •3 Біполярні транзистори
- •3.1 Будова та принцип дії біполярних транзисторів
- •3.1.1 Загальні відомості про біполярні транзистори
- •Класифікація транзисторів
- •Система позначень бт
- •Будова сплавних транзисторів
- •3.1.2 Способи вмикання й режими роботи біполярних транзисторів
- •3.1.3 Принцип дії біполярного транзистора в активному режимі
- •3.1.4 Вплив конструкції та режиму роботи транзистора на h21б
- •3.1.5 Схема вмикання транзистора зі спільним емітером та спільним колектором
- •3.1.6 Модель Еберса-Молла
- •3.2 Статичні характеристики і параметри біполярних транзисторів
- •3.2.1 Статичні характеристики біполярного транзистора у схемі зі спільною базою
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.2 Статичні характеристики біполярного транзистора у схемі зі спільним емітером
- •Вхідні характеристики
- •Вихідні характеристики
- •Характеристики прямої передачі
- •Характеристики зворотного зв’язку
- •3.2.3 Статичні характеристики біполярного транзистора у схемі зі спільним коллектором
- •3.2.4 Вплив температури на статичні характеристики транзисторів
- •3.2.5 Граничні режими транзистора
- •Пробої транзистора
- •Максимально допустима потужність, що розсіюється колектором
- •3.2.6 Диференціальні параметри біполярного транзистора
- •Зв'язок між h-параметрами для різних схем увімкнення бт
- •3.2.7 Фізичні параметри та еквівалентні схеми біполярних транзисторів
- •3.3 Робота біполярного транзистора у динамічному режимі
- •3.3.1 Принцип дії підсилювального каскаду на біполярному транзисторі
- •3.3.2 Способи забезпечення режиму спокою транзисторного каскаду
- •Емітерному колі
- •Оцінка транзисторних каскадів з точки зору температурної нестабільності
- •3.3.3 Динамічні характеристики біполярного транзистора та їх використання
- •Вихідна навантажувальна характеристика
- •Вхідна навантажувальна характеристика
- •Параметри режиму підсилення та їх розрахунок за динамічними характеристиками транзисторного каскаду
- •3.3.4 Частотні властивості біполярних транзисторів
- •Вплив ємностей переходів і розподіленого опору бази на частотні властивості транзистора
- •3.3.5 Робота біполярного транзистора у ключовому режимі
- •3.4 Деякі різновиди біполярних транзисторів
- •3.4.1 Одноперехідний транзистор
- •3.4.2 Високочастотні малопотужні транзистори
- •3.4.3 Потужні транзистори
- •4 Польові транзистори
- •4.1 Польові транзистори з керувальним переходом
- •Статичні вхідні характеристики
- •Статичні прохідні (стокозатворні) характеристики
- •Статичні вихідні (стокові) характеристики
- •Диференціальні параметри польових транзисторів
- •4.2 Польові транзистори з ізольованим затвором (мдн - транзистори)
- •4.2.1 Ефект поля
- •4.3 Залежність характеристик і параметрів польових транзисторів від температури
- •4.4 Динамічний режим роботи польових транзисторів
- •4.4.1 Каскад на польовому транзисторі: розрахунок у статиці та динаміці
- •4.4.2 Частотні властивості польових транзисторів
- •4.5 Потужні польові транзистори
- •Потужні мдн – транзистори
- •Транзистори зі статичною індукцією
- •4.6 Польові прилади із зарядовим зв’язком
- •5 Тиристори
- •5.1 Будова, принцип дії та режими роботи тиристора
- •5.1.1 Загальні відомості
- •5.1.2 Диністорний режим
- •5.1.3 Триністорний режим
- •5.1.4 Симістори
- •5.2 Способи комутації тиристорів
- •5.2.1 Увімкнення тиристорів
- •Увімкнення за допомогою струму керування
- •Увімкнення тиристора за допомогою імпульсу анодної напруги
- •5.2.2 Вимкнення тиристорів
- •Вимкнення за допомогою подачі напруги на керувальний електрод (за допомогою струму керування)
- •5.3 Біполярні транзистори з ізольованим затвором
- •6 Оптоелектронні напівпровідникові прилади
- •6.1 Загальні відомості
- •6.2 Випромінювальні діоди
- •6.3 Напівпровідникові фотоприймачі
- •6.3.1 Фоторезистори
- •6.3.2 Фотодіоди
- •6.3.3 Фотоприймачі з внутрішнім підсиленням
- •6.4 Оптрони та їх застосування
- •7 Основи мікроелектроніки
- •7.1 Основні поняття і визначення
- •Історична довідка
- •7.2 Гібридні інтегральні схеми
- •7.3 Напівпровідникові інтегральні схеми
- •7.3.1 Технологія
- •Планарно-дифузійна технологія виготовлення біполярних напівпровідникових інтегральних схем
- •7.3.2 Технологія виготовлення інтегральних
- •Ізоляція
- •7.3.3 Біполярні транзистори
- •Багатоемітерні транзистори
- •Супербета - транзистори
- •Біполярні транзистори з бар'єром Шотткі
- •7.3.4 Мон (мдн)- транзистори
- •7.3.6 Резистори
- •7.3.7 Конденсатори
- •7.4 Інтегральні схеми з інжекційним живленням
- •Позначення основних величин
- •Список літератури
- •1.1.4 Рекомбінація носіїв заряду та тривалість їх життя 11
- •1.2.4 Теоретична вольт-амперна характеристика p-nпереходу 28
- •1.2.5 Параметри переходу 30
- •3 Біполярні транзистори 69
- •3.1 Будова та принцип дії біполярних транзисторів 69
- •3.1.1 Загальні відомості про біполярні транзистори 69
- •6 Оптоелектронні напівпровідникові
- •Твердотільна електронікА
1.1.3 Діркова провідність напівпровідників
Цей тип провідності здійснюється завдяки введенню у 4-валентний НП 3-валентних атомів галію Ga або індію In. У домішкових атомів не вистачає одного електрона для створення ковалентного звязку і нестача може бути компенсована за допомогою електрона, звільненого внаслідок розриву ковалентного звязку у 4-валентному атомі кристалічної ґратки. Домішки такого типу називаються акцепторними (лат. acceptor – той, що отримує), бо вони отримують електрони, вирвані з валентної зони. При цьому у ВЗ створюється вільний рівень – дірка (рис. 1.5 а, б).
а) б)
Рисунок 1.5 - Механізм діркової провідності НП:
а – схема кристалічної ґратки; б – енергетична діаграма
Оскільки
поява дірок у ВЗ для акцепторного НП
здебільшого не супроводжується
збільшенням числа електронів у ЗП, то
дірок у НП стає набагато більше. Дірки
у такому НП є основними носіями,
електрони, кількість яких у кристалі
незначна, є неосновними носіями. Енергія
активації акцепторів
еВ
для кремнію,
еВ
для германію. Акцепторний НП називається
напівпровідникомр-типу.
Концентрацію дірок у акцепторному НП знаходять за формулою
, (1.3)
де
– концентрація атомів акцепторних
домішок;
–власна
концентрація дірок,
.
Рівень
Фермі в акцепторному НП зміщується у
нижню половину ЗЗ, причому його
енергетична відстань від ВЗ зменшується
зі збільшенням концентрації акцепторів
.
Існує загальна закономірність для домішкових напівпровідників
. (1.4)
З (1.4) можна зробити висновок: введення в НП домішок приводить до збільшення концентрації носіїв заряду одного знака і до пропорційного зменшення концентрації інших носіїв завдяки зростанню ймовірності їх рекомбінації.
1.1.4 Рекомбінація носіїв заряду та тривалість їх життя
У пункті 1.1.1 йшлося про рекомбінацію пари електрон-дірка внаслідок зіткнення при здійсненні власної провідності НП. Ця рекомбінація, під час якої електрон з ЗП повертається у ВЗ, супроводжується виділенням енергії у формі квантів світла (фотонів) або енергії теплових коливань кристалічної ґратки (фононів). Така рекомбінація називається прямою (рис. 1.6 а).
У домішкових НП існують й інші види рекомбінації. На рис. 1.6 б показано принцип рекомбінації за допомогою локального рівня. У забороненій зоні можуть з’являтися локальні енергетичні рівні, утворені домішковими атомами та різноманітними дефектами кристалічної ґратки. На локальний рівень із ЗП може переходити електрон, заповнюючи його. Згодом електрон може або повернутися назад до ЗП, або перейти у ВЗ, рекомбінуючи з діркою. Останнє може бути інтерпретовано як захоплення дірки з ВЗ заповненим локальним рівнем. Ймовірність зіткнення дірки з нерухомим електроном, який утримується на локальному рівні, значно перевищує ймовірність зустрічі її з рухомим електроном із ЗП. Тому локальні рівні у забороненій зоні є ефективними центрами рекомбінації.
а) б)
Рисунок 1.6 - До пояснення рекомбінації носіїв заряду
Подібно до попередньої діє поверхнева рекомбінація, яка зумовлена виникненням у НП додаткових «пасток» внаслідок осідання на поверхні кристала сторонніх молекул і механічної обробки.
Як відзначалося у п. 1.1.1, у стані термодинамічної рівноваги у НП встановлюється рівноважна концентрація носіїв. Але, крім теплового збудження, причиною збагачення НП електронами й дірками є освітлення, введення носіїв через контакт (інжекція) тощо. Енергія збудження в цьому разі передається безпосередньо носіям, у той час як теплова енергія ґратки залишається незмінною. Отже, надлишкові носії заряду не перебувають у стані теплової рівноваги з ґраткою і називаються нерівноважними. Якщо рівноважні носії розподілені в кристалі рівномірно, то нерівноважні носії можуть утворювати градієнт концентрації.
При утворенні надлишкової концентрації носіїв заряду у НП змінюється концентрація як основних, так і неосновних носіїв. Оскільки надлишкова концентрація основних носіїв дуже мала порівняно з рівноважною, то зміну концентрації основних носіїв контролювати неможливо. Надлишкова концентрація неосновних носіїв, що утворюється, набагато більше впливає на зміну концентрації останніх.
Коли дія збудника на НП припиняється, надлишкова концентрація неосновних носіїв починає зменшуватися внаслідок їх рекомбінації з основними носіями. Будемо вважати, що швидкість спаду концентрації неосновних носіїв пропорційна надлишковій концентрації цих носіїв (дірок):
,
або
, (1.5)
де а – коефіцієнт, що залежить від типу НП;
нерівноважна
концентрація дірок у НП n-типу.
Інтегруючи
вираз (1.5) і вважаючи, що в момент
припинення дії збудника концентрація
,
одержуємо закон зміни концентрації
нерівноважних носіїв – дірок у НПn-типу:
. (1.6)
У
формулі (1.6) коефіцієнт а
характеризує
швидкість спаду концентрації нерівноважних
носіїв. Величина
називається
тривалістю життя неосновних носіїв
(дірок).
Отже, тривалість життя нерівноважних носіїв у НП - це час, впродовж якого концентрація цих носіїв унаслідок рекомбінації зменшується в е раз.