
- •Калинин Виталий Леонидович. Репликация генома
- •Классификация днк-полимераз
- •Днк-полимеразы e. Coli
- •1.2.1. Днк-полимераза I e.Coli
- •1.2.2. Днк-полимераза II e.Coli
- •1.2.3. Днк-полимераза III e. Coli
- •1.3. Эукариотические днк-полимеразы и днк-полимеразы археев
- •1.3.1. Днк-полимераза
- •Главные эукариотические днк-полимеразы
- •1.3.2. Днк-полимераза
- •1.3.3. Днк-полимераза
- •1.3.4. Днк-полимеразы и
- •1.3.5. Днк-полимеразы археев
- •1.4. Скользящие зажимы днк-полимераз и их погрузчики
- •1.4.1. Скользящие зажимы – факторы процессивности днк-полимераз
- •1.4.2. Погрузчики скользящего зажима
- •Литература
- •Глава 2. Вспомогательные белки репликации днк
- •2.1. Днк-геликазы
- •2.1.1. Общая характеристика геликаз
- •5’3’ 3’5’
- •3’ 5’
- •1 22 138 174 345 471
- •2.1.3. Днк-геликаза репликативной вилки у эукариотов
- •2.1.4. Механизм действия гексамерных днк-геликаз
- •1 10 70 245
- •2.2. Белки, связывающие однонитевую днк
- •1 21 254 301
- •Домены dвр-а - dвр-d белка rpAизображены в виде ладоней, а онДнк – в виде стрелки
- •2.3. Праймазы
- •1 100 200 300 400 500 582
- •1 2 3 4 5 6
- •2.4. Днк-лигазы
- •2.5. Днк-топоизомеразы
- •Литература
- •Глава 3. Инициация репликации хромосомной днк
- •3.1. Инициация репликации хромосомы e. Coli
- •3.1.1. Белок-инициатор DnaA
- •1 56 129 350 429
- •Ihf r5(m)
- •3.1.3. Этапы инициации репликации на онр oriC
- •3.1.4. Регуляция инициации репликации хромосомы e. Coli
- •Секвестрирование oriC
- •3.2. Инициация репликации у дрожжей Saccharomyces cerevisiae
- •3.2.1. Области начала репликации (онр) ars и комплекс узнавания онр (orc)
- •Gaaaagcaagcataaaagatctaaacataaaa tctgtaaaataaca
- •Изогнутыми стрелками отмечены сайты инициации двунаправленной репликации хромосомной днк. Приведена последовательность комплементарной нити сайта acs
- •3.2.2. Этапы пути инициации репликации на онр у дрожжей
- •3.3. Инициация репликации у высших эукариотов
- •3.3.1. Белковые компоненты и путь инициации репликации
- •3.3.2. Проблема существования областей начала репликации у высших эукариотов
- •90 40 60 165 330 65 190 (П.Н.)
- •17 5 23 (Т.П.Н.)
- •55 Т.П.Н.
- •Caaaagcaagacaaa gacaagc tccaaataagattca Ori хомячка (cho)
- •3.4. Регуляция инициации репликации в эукариотических клетках
- •Литература
3.3. Инициация репликации у высших эукариотов
3.3.1. Белковые компоненты и путь инициации репликации
Гомологи большинства белков S. cerevisiae, участвующих в описанном выше пути инициации репликации (Orc1-Orc6, Cdc6, Mcm2-Мcm7, Cdc7-Dbf4 и Cdc45), сохраняются и у высших эукариотов (дрозофилы, лягушек Xenopus laevis и человека). В отличие от дрожжей, у которых в общем контроле клеточного цикла участвует одна киназа Cdc28, высшие эукаритоы на разных стадиях цикла используют разные циклин-зависимые протеинкиназы. Поэтому следует уточнить, что дрожжевые комплексы Cdc28-Clb5,6 у высших эукариотов заменяются комплексами протеинкиназы Сdk2 с циклинами А и Е.
Особенно интересны свойства эукариотических белков Orc, которые, по аналогии с дрожжами, должны узнавать области начала репликации. Среди S. cerevisiae, дрозофилы и человека эти белки идентичны на 18-27% и гомологичны на 33-39% (табл. 4.1). Исключение составляет наименее консервативный белок Orc6, который у дрожжей не требуется для стабильного связывания ORC c ОНР. Максимальную гомологию проявляют белки Orc4. Более того, дрожжевому белку Orc4, участвующему во взаимодействии с последовательностью ACS, структурно гомологичны белок-инициатор репликации RepA плазмиды из бактерий Pseudomonas и белок Сdc6 из архея Pyrobaculum aerophilum. Это указывает на их консерватизм во всех 3 царствах жизни. Для 5 белков комплекса ORC (Orc1-Orc5) из многих эукариотов выполняется общее правило: их гомология на C-конце выше, чем на N-конце. С-концевые домены этих белков, вероятно, участвуют в гетероолигомеризации при образовании гексамерного комплекса ORC. Так, у человека С-конец Orc2 взаимодействует с Orc3, а С-конец Orc3 необходим для вовлечения в ORC субъединиц Orc4 и Orc5. N-концевые домены белков Orc, предположительно, требуются для взаимодействия с другими клеточными белками или с разными последовательностями ДНК.
Консерватизм основных участников последовательных стадий сборки инициирующих комплексов репликации согласуется и с экспериментальными данными, показавшими, что в общих чертах этапы пути инициации репликации у высших эукариотов такие же, как изображено на рис. 00 для S. cerevisiae. Однако имеются два существенных различия.
Если у почкующихся дрожжей комплекс ORC ведет себя как единое целое и остается связанным с ARS на протяжении всего клеточного цикла, то у млекопитающих этот комплекс разбирается по меньшей мере частично во время митоза и вновь собирается в самом начале фазы G1. Так, белок Orc1 очень слабо ассоциирован с хроматином в митотических клетках млекопитающих и прочно связывается с ДНК в ранней фазе G1 одновременно со сборкой преинициирующего комплекса. Такое временное освобождение Orc1 и, возможно, других компонентов ORC отсрочивает сборку предрепликативного комплекса до завершения митоза и восстановления ядерной структуры. Детали регуляции этого процесса сборки-разборки ORC были уточнены у Xenopus. В этой системе белки Orc освобождаются из хроматина при инкубации с экстрактом из метафазных клеток или с протеинкиназным комплексом Cdc2 – циклин А. Такое освобождение коррелирует с фосфорилированием субъединиц Orc1 и Orc2. Та же самая циклин-зависимая протеинкиназа ответственна и за продвижение клеток в фазу М. Одновременно она блокирует инициацию репликации до завершения фазы митоза, вызывая временную разборку комплекса ORC в конце каждого клеточного цикла.
Второй особенностью пути инициации репликации у высших эукариотов является участие наряду с Cdc6 дополнительного белка – фактора лицензирования репликации RLF-2 – в погрузке комплекса МСМ на ОRC, связанный с хроматином. В яйцах Xenopus RLF-2 также нужен для ассоциации белков Mcm с хроматином, хотя, скорее всего, его главная функция реализуется на более поздней стадии перехода от предрепликативного комплекса к комплексу активной репликации.