Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Аверянов Основы современной информатики 2007

.pdf
Скачиваний:
72
Добавлен:
16.08.2013
Размер:
7.31 Mб
Скачать

Плоские жидкокристаллические панели имеют целый ряд потребительских качеств, делающих их особенно привлекательными:

абсолютно плоский экран; отсутствие геометрических искажений; высокая яркость; малая глубина, компактность;

очень низкий уровень электромагнитных излучений. Основным недостатком ЖК-мониторов на начальном этапе их раз-

вития была их стоимость, в связи с чем они применялись только в ноутбуках. Однако, начиная с 1999 г. в производство ЖК-панелей были вложены огромные инвестиции, что привело к улучшению их качества и значительно снизило цену. Так, если в 2000 г. доля мониторов на ЖК-панелях в общем объеме выпуска составляла 5 %, то к 2006 г. предполагалось, что она составит не менее 30 %. По данным Stanford Resourses, по объему производства мониторы с ЭЛТ в 2001 г. превзошли ЖК-мониторы более, чем в 2 раза. Ожидается, что только к 2006 г. соотношение изменится на обратное.

Справедливости ради, необходимо отметить, что пока (на 2006 г.) мониторы с ЭЛТ все еще лучше справляются с динамическим изображением компьютерных игр и видеомониторов. Кроме того, в силу менее точной цветопередачи фиксированным и, как правило, не слишком высоким экранным разрешением ЖК-дисп- леев мониторы с ЭЛТ используются для профессиональной работы с графикой (правда, в данном случае речь об экономии не идет вовсе) и если ситуация с разрешением ЖК-мониторов меняется в лучшую сторону, то о тонкой настройке цветовой температуры у них говорить не приходится.

Однако в отличие от ЭЛТ, где улучшение характеристик происходит благодаря постепенному совершенствованию технологий, развитие плоских индикаторов происходит нередко скачкообразно, благодаря появлению совершенно новых, перспективных технологий.

Одним из наиболее многообещающих вариантов, с технологической точки зрения, является замена в ЖК-экранах аморфного кремния на поликристаллический. Это дает возможность снизить размер транзисторов (на матрице), что позволяет увеличить разрешение экрана, снизить энергопотребление, увеличить скорость изображения. Кроме того, увеличивается рабочий ток транзисто-

61

ров, а следовательно, уменьшается время переключения транзисторов, т.е. снижается инерционность на играх и видео. И, наконец, благодаря уменьшению размеров транзисторов появляется возможность создавать логические и управляющие цепи прямо на подложке, устройство становится более надежным благодаря уменьшению количества компонентов и этапов сборки панелей. Происходят обширные исследования и в других направлениях в рамках развития технологии ЖК-панелей.

Конкуренция на рынке ЖК-дисплеев настолько усиливается, что некоторые компании переключаются на производство других перспективных панелей, в первую очередь, на основе органических светодиодов (ОСД – OLED-Organic electroluminescent diods), неор-

ганических электролюминесцентных дисплеев, светоизлучающих полимеров и т.п.

При использовании мониторов для ввода информации, кроме отмеченной выше клавиатуры, применяются еще два типа устройств, повышающих эффективность работы пользователя:

устройства прямого указания, позволяющие осуществлять ввод, непосредственно указывая положение точки на экране монитора; сюда относятся световое перо (внутри которого находится фотоэлемент, реагирующий на освещенность экрана), а также сенсорные экраны, позволяющие пользователю давать указания компьютеру, прикасаясь пальцем к экрану;

устройства косвенного указания, позволяющие задавать коор-

динаты точек на экране с помощью графических планшетов, рычагов со сферой (джойстик) и т.п. (наибольшее распространение получили устройства типа «мышь», они предназначены для быстрого перемещения курсора (специального указателя, светящейся точки экрана) в любую позицию экрана и включения определенных функций в указанных точках, «мышь» перемещается по любой гладкой горизонтальной поверхности; несколько кнопок, имеющихся на ее поверхности, аналогичны по своему назначению часто употребляемым клавишам клавиатуры).

62

2.3.Архитектура компьютеров, понятие об интерфейсах

иих разновидности

Большое значение имеет концепция взаимосвязи отдельных частей компьютера, структура или (как это принято называть в информатике) архитектура вычислительной системы. Архитектура компьютера значительно влияет на производительность и эффективность использования вычислительных машин.

Термин «архитектура компьютера» был введен в начале 60-х годов прошлого века одной из групп специалистов в области компьютеров фирмы IBM. Он предназначался для описания общей программной модели семейства IBM 360 на уровне языка Ассемблер, семейств компьютеров одинаковой архитектуры с точки зрения данного языка. Архитектуру компьютера или вычислительной системы следует понимать как систему основных функциональных средств, доступных пользователю, и принципов организации процесса обработки информации. В некоторых случаях, говоря о структуре (архитектуре) персональных компьютеров, употребляется термин «анатомия компьютера».

Всовременной литературе термин «архитектура» употребляется

вразличных контекстах, например, для теоретической классификации способа обработки данных (архитектура фон Неймана, параллельная архитектура, нейрокомпьютинг, нейтронный компьютинг и т.п.), для определения принципов организации и функционирования вычислительных систем (архитектура IBM EISA, архитектура

DEC AXP и т.п.).

Прежде чем перейти к описанию различных структур построения компьютеров и динамики развития архитектуры, необходимо отметить, что в любом компьютере имеется еще один аппаратурный блок, не указанный на схеме рис. 2.2 и имеющий непосредственное отношение к структуре компьютера.

Непосредственное присоединение различных функциональных элементов (УВВ и ОП) к центральному процессору осуществляется через определенные точки, именуемые точками сопряжения (стык). Поскольку все три основных блока компьютера (ОП, ЦП и УВВ) имеют различные характеристики своих выходных параметров, то для обеспечения их совместимости необходимо еще одно устройство, решающее эти задачи. Совокупность средств, обеспечиваю-

63

щих логические, электрические и конструктивные условия совместимости ЦП и функциональных устройств в точках сопряжения и их взаимодействия, получила название средств сопряжения, или

интерфейса.

Вкачестве логических условий должны быть заданы виды сигналов (адресные, информационные и управляющие) и их количество, система кодирования и форма передачи данных, функции адресных

иуправляющих сигналов и т.п.

Вкачестве электрических условий обеспечения совместимости задаются значение напряжений (логических) двоичных сигналов, временные параметры этих сигналов, нагрузочная способность по входу и выходу сопрягаемых цепей и т.д.

К конструктивным условиям обеспечения совместимости относятся конструктив соединения (тип разъема), распределение контактов в разъемном соединении, допустимые типы кабеля и др.

Вотечественной практике для описания совокупности схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов систем обработки данных (компьютерных сетей, систем передачи данных), подсистем периферийного оборудования, используются понятия «интерфейс», «стык» и «протокол».

Под стандартным интерфейсом понимается совокупность унифицированных, аппаратурных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в автоматизированных системах сбора

иобработки информации при условиях, предписанных стандартом

инаправленных на обеспечение информационной, электрической и конструктивной совместимости.

Стык – место соединения устройств передачи сигналов данных, входящих в систему передачи данных. Это понятие используется вместо понятия интерфейса для описания функций и средств сопряжения элементов средств связи и систем передачи данных

(СПД).

Под протоколом понимается строго заданная процедура или совокупность правил, регламентирующая способ выполнения определенного класса функций. Взаимосвязь понятий интерфейса и протокола не всегда однозначна, так как практически любой интерфейс содержит в большей или меньшей степени элементы про-

64

токола, определяемые процедурами и функциональными характеристиками интерфейса.

Основное назначение интерфейсов, стыков и протоколов – унификация внутримашинных связей.

Различают несколько видов интерфейсов:

системный (внутрисистемный), представляющий собой сово-

купность унифицированной магистрали для передачи информации электронных схем, служащих для согласования, преобразования и управления сигналами на магистрали, а также унифицированных алгоритмов (протоколов) обмена информацией между отдельными устройствами компьютера;

периферийного оборудования, включающий универсальные (к

ним можно отнести различные типы параллельных и последовательных) и специализированные интерфейсы;

программируемых приборов, служащий для подключения нестандартной аппаратуры, измерительных и управляющих систем;

магистрально-модульных, микропроцессорных систем; локальных вычислительных систем и т.п.

Понятия архитектуры, а также интерфейса связаны со следующими элементами, входящими в состав любого компьютера:

линии интерфейса – электрические цепи, являющиеся составными физическими связями интерфейса;

шина – совокупность линий, сгруппированных по функциональному назначению (шина адреса, шина команд, шина данных, шина состояния и т.п.);

магистраль – совокупность всех шин интерфейса. Конструктивно (как правило) магистраль – печатная плата,

обеспечивающая соединение контактов разъемов, с помощью которых к магистрали подключаются различные устройства ЭВМ (т.е. их интерфейсы).

С точки зрения шинной организации можно выделить два типа архитектур компьютера: машины с одношинной организацией (UNIBUS), имеющие общую (одну) магистраль для подключения всех устройств компьютера, и машины с многошинной организацией (MULTIBUS) и несколькими магистралями, например между ЦП и ОП одна магистраль, а между ПУ и ЦП – другая. Родоначальником промышленного внедрения общей шины является фир-

ма DEC (Digital Equipment Corporation) и применяется она, как пра-

65

вило, в мини-, микрокомпьютерах и персональных компьютерах, т.е. недорогих машинах, имеющих невысокую производительность. Такая архитектура очень проста и удобна с точки зрения программирования, так как все устройства компьютера напрямую связаны между собой (каждый связан с каждым).

Многошинная организация применяется в больших компьютерах, а также в указанных выше мини- и микрокомпьютерах повышенной производительности. Разделение магистралей (например, по скоростям – низкоскоростные, высокоскоростные и т.п.), безусловно, усложняет конструкцию и удорожает ее, однако позволяет повысить производительность и эффективность использования компьютера и отдельных его частей.

Главным стимулом развития архитектуры компьютеров является повышение производительности. Поскольку классическая схема по мере повышения производительности ЦП не приводила к адекватному повышению производительности компьютера в целом, потребовалось дальнейшее ее совершенствование. На начальном этапе это было связано с некоторыми новациями, о которых частично упоминалось выше.

Таких новаций две – распараллеливание и специализация. Хотя мультипрограммная обработка не может считаться, в полном смысле, параллельной (так как в каждый момент выполняется только одна задача), тем не менее, ее относят к так называемому логическому распараллеливанию.

В рамках дальнейшего развития этой же архитектуры как большие компьютеры, так и самые первые микропроцессоры для персональных компьютеров (Intel 8086) использовали поточную (или многофункциональную) обработку, когда при выполнении очередной команды часть функциональных элементов ЦП одновременно проводит подготовку к выполнению следующей (загрузку из ОП и ее дешифровку). Дальнейшее расслоение ЦП связано с появлением процессоров ввода-вывода, арифметических процессоров (сопроцессоров), графических, криптографических процессоров и т.п. Один из способов повышения производительности вычислительной техники – специализация (как отдельных элементов компьютеров, так и создание специализированных вычислительных систем).

Специализация процессоров началась с 60-х годов прошлого века, когда центральный процессор больших компьютеров был осво-

66

божден от выполнения рутинной операции по вводу-выводу информации. Эта функция была передана процессору ввода-вывода, осуществляющему связь с периферийными устройствами.

Возможны три способа специализации в вычислительных машинах:

расширение системы команд универсальных компьютеров общего назначения, включение команд вычисления часто встречаемых функций с возможной аппаратной реализацией;

использование периферийных процессоров, подключаемых к универсальным компьютерам и реализующих некоторые вычислительные операции независимо от ЦП, например матричные процессоры, графические и т.п.;

создание специализированных компьютеров или процессоров, структура которых ориентирована на решение узкого класса задач большой сложности.

Следующие архитектурные новации связаны с уже упоминавшимся ранее расслоением ОП. Дальнейшее увеличение производительности предполагает многопроцессорную обработку.

Поскольку быстродействие однопроцессорных компьютеров ограничивается физическими возможностями (скоростью распространения электрических сигналов), дальнейшее совершенствование компьютеров связано и с развитием их параллелизма и переходом к так называемой параллельной архитектуре, включением в состав компьютеров большого количества основных (центральных) процессоров.

В соответствии с так называемой классификацией Флина (M. Flyne) возможны четыре типа архитектуры в зависимости от их распараллеливания:

1)без использования параллельных вычислений, когда один поток команд обрабатывает поступающий на вход один поток данных

(ОКОД или SISD, single instruction, single data stream);

2)несколько процессоров по одному алгоритму (одной команде) обрабатывают одновременно несколько потоков данных (ОКМД или SIMD, single instruction, multiple data streams, параллельная об-

работка);

3)когда один поток данных обрабатывается большим количест-

вом процессоров различного функционального назначения (МКОД

67

или MISD, multiple instructions, single data stream, конвейерная ар-

хитектура); 4) самая высокая степень распараллеливания, когда множест-

венный поток данных обрабатывает множественный поток команд

(МКMД или МIМD, multiple instructions, single data stream, матрич-

ная архитектура).

Если выделить из процессора функциональные блоки, ответственные за доставку и подготовку команд, назвав эту часть процессором команд, а часть процессора, непосредственно осуществляющую обработку, назвать арифметическим процессором, то четыре разновидности распараллеливания можно представить в виде схем

(рис. 2.10).

Развитие различных уровней запоминающих устройств, таких, как рассмотренные выше кэш-память, канал массовой памяти, электронные диски и т.п., также оказало заметное влияние на эволюцию архитектуры компьютеров.

Теперь рассмотрим, как же эти четыре принципа используются в конкретных типах СОД.

2.4. Классификация компьютеров, краткие характеристики суперкомпьютеров, мейнфреймов и мини-компьютеров

Хотя современные персональные компьютеры (ПК) обладают впечатляющими возможностями, которые существенно расширились в связи с появлением 64-разрядных микропроцессоров, не следует полагать, что они справятся с любой задачей. Неявным подтверждением этого является несколько уровней технических средств, традиционно развивающихся на протяжении многих лет в мире (суперкомпьютеры, мейнфреймы) и появившихся сравнительно недавно (мини-компьютеры, микрокомпьютеры, ПК, рабочие станции, серверы и суперсерверы).

Хотя сложившаяся классификация ЭВМ в последнее время подвергается значительным изменениям, тем не менее, до последнего времени эксплуатируются все перечисленные выше типы компьютеров.

68

Рис. 2.10. Классификация компьютерных систем (классификация Флина)

При выборе вычислительных средств рекомендуется пользоваться следующим правилом: «из всех возможных вариантов построения системы наилучшим является тот, который обеспечивается наиболее простой архитектурой». Только когда ее возможностей не хватает, следует рассматривать более сложную организацию. Практикой доказано, что:

69

лучше использовать один быстрый компьютер, чем много медленных;

проблему создания необходимого количества рабочих мест (активных экранов) лучше решать с помощью многопользовательских систем, чем с помощью локальных систем ПК;

массовый параллелизм можно использовать только при полной уверенности в реально существующем параллелизме приложений.

Суперкомпьютеры – один из наиболее динамично развивающихся классов компьютеров, имеющих обширные и очень важные области применения.

Термин «суперкомпьютер» был использован в начале 60-х годов прошлого столетия, когда группа специалистов Иллинойского университета предложила идею реализации параллельного компьюте-

ра – проект SOLOMON.

В60-х годах количество суперкомпьютеров исчислялось единицами, в 1988 г. (по данным США) их количество достигло 40 шт., в 1991 г. – 760 шт. (Cray Corp, Fujitsu, Hitachi, Nippon Electric (NEC)).

После 2000 г. началось массовое производство машин этого класса.

В80-е годы под суперкомпьютерами было принято считать вы-

числительные системы с производительностью не меньше 100 млн операций с плавающей точкой в секунду (мегафлоп/с*), при работе

с64-разрядными словами в поле оперативной памяти не меньше одного мегабайта. «Плавающая точка» относится к двоичной вер-

* Flops (flouting point operation per second) – количество операций с плавающей точкой в секунду – единица измерения производительности суперкомпьютеров. МFlops (мегафлоп) – миллион операций с плавающей точкой в секунду, GFlops (гигафлоп) – миллиард операций, ТFlops (терафлоп) – триллион операций. Реальная производительность самого мощного суперкомпьютера 2005 г. превысила 136 ТFlops, а в 2004 г. этот показатель составлял 35 ТFlops.

Различают пиковую и реальную производительность суперкомпьютеров. Пиковая производительность многопроцессорной системы – теоретическое значение, недостижимое на практике. Оно получается умножением пиковой производительности отдельного процессора на число процессоров в системе. Пиковая производительность отдельного процессора в общем случае получается путем умножения его тактовой частоты на максимальное число операций, выполняемое за один такт.

Реальная производительность – производительность, полученная при решении реальной задачи (академической или промышленной). Так, системы в рейтинге самых мощных суперкомпьютеров (ТОР-500) ранжируются по результатам теста LINPACK – реальной академической задачи на решение системы линейных уравнений.

70