Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Аверянов Основы современной информатики 2007

.pdf
Скачиваний:
72
Добавлен:
16.08.2013
Размер:
7.31 Mб
Скачать

а

б

в

г

Рис. 4.15. Варианты топологии локальных вычислительных сетей

При всем различии ЛВС и ГВС по мере развития этих сильно отличающихся на начальном этапе сетевых технологий происходит явное их сближение, которое уже привело к значительному их взаимопроникновению.

151

Одним из проявлений этого сближения является появление сетей масштаба большого города (MAN), занимающих промежуточное положение между локальными и глобальными сетями и имеющих ряд характерных особенностей как тех, так и других.

Появление новых технологий, использование оптической (цифровой) немодулированной передачи данных по оптоволоконным линиям в ГВС значительно повысило их надежность, упростило техническую реализацию, избавило от сложных и избыточных процедур обеспечения корректности передачи и позволило обеспечить скорости передачи данных сравнимые и даже превышающие скорости современных ЛВС.

Вто же самое время (как уже отмечалось) локальные сети перенимают у глобальных транспортные технологии. Все новые скоростные ЛВС поддерживают работу по индивидуальным линиям связи наряду с традиционными для ЛВС разделяемыми линиями.

Влокальных сетях также большое внимание уделяется методам защиты информации от несанкционированного доступа. Такое внимание обусловлено тем, что ЛВС перестали быть изолированными, чаще всего они имеют выход в «большой мир» через глобальные связи.

И, наконец, появляются технологии, изначально предназначенные для обоих видов сетей. Наиболее ярким представителем нового поколения технологий является технология АТМ.

Процесс переноса служб и технологий из глобальных сетей в локальные приобрел такой массовый характер, что появился даже специальный термин intranet-технологии (intra – внутренний), обозначающий применение служб внешних (глобальных) сетей во внутренних (локальных).

Методы доступа в ЛВС. Методы доступа в ЛВС, входящие в

состав протоколов канального уровня, определены рядом стандартов IEEE*. Наибольшее распространение получили ЛВС, использующие технологию Ethernet (802.3), реализованную в 1975 г. фирмой Xerox. Этот метод доступа опробован еще раньше в радиосети Алоха, о которой уже упоминалось ранее.

* IEEE (Institute of Electrical and Electronic Engineers – Институт инженеров по электротехнике и электронике) – организация, разрабатывающая и публикующая стандарты, непосредственно связанные с физическим уровнем и, в частности, с топологией сетей.

152

В зависимости от типа физической среды (и топологии) стандарт IEEE 802.3 имеет различные модификации: 10 Base-5 – «толстый коаксиал»; 10 BASE-2 – «тонкий коаксиал» с шинной топологией; 10 Base-T – неэкранированная витая пара; 10 Base-F – оптоволокно; 100 Base-T, F – витая пара, оптоволокно с топологией звезда.

При передаче двоичной информации по кабелю различных типов Ethernet обеспечивает пропускную способность 10 Мбит/с в полудуплексном режиме (за исключением 100 Base-T, F).

Принятый в 1995 г. стандарт Fast Ethernet обеспечивает скорость 100 Мбит/с, а принятый в 1998 г. стандарт Gigabit Ethernet предполагает скорости 1000 Мбит/с. Оба работают в дуплексном режиме.

Все виды стандартов Ethernet используют один и тот же метод доступа (разделение среды) CSMA/CD (Carrier Sense Multiply Access with Collision Detection) – случайный множественный доступ с контролем несущей и разрешением коллизий. Принцип доступа аналогичен сети Алоха: используется один канал (моноканал) для всех станций, хотя в Ethernet в качестве канала служит кабель, который может использоваться всеми в любой момент, когда это потребуется (случайным образом). Так, на рис. 4.16 три станции независимо, случайным образом обращаются к каналу. Но в отличие от простой сети Алоха станция, прежде чем занять канал для передачи своей информации, прослушивает его на предмет занятости. Таким образом, станция 2 занимает канал только после того, как станция 1 его освобождает. Однако при одновременном (или почти одновременном) обращении к каналу двух станций, когда сигнал не успевает распространиться по линии и станции не регистрируют занятости канала, возможно столкновение и искажение пакетов. В этом случае вступает в действие механизм разрешения столкновений (коллизий). Он обнаруживает столкновение и обрывает передачу. Это и представлено на рис. 4.16, где произошла коллизия между станциями 2 и 3. Обе станции ждут в течение короткого случайного интервала времени, а затем повторяют передачу. Этот метод доступа обеспечивает случайное временное уплотнение каналов и имеет очень высокую эффективность их использования.

153

Рис. 4.16. Метод доступа CSMA/CD

В зависимости от типа спецификации количество рабочих станций в сети лежит в диапазоне от 30 – 10 Base-2 (тонкий Ethernet) до 1024 – 10 Base-Т (неэкранированная витая пара), максимальное расстояние между узлами сети 925 м (10 Base-5, 10 Base-F – толстый коаксиальный кабель или оптический кабель).

Широкое распространение получили также сети с маркерным методом доступа (Token Ring, ArcNet и FDDI). Принципиально они очень близки, так же как и в Ethernet они имеют общую, разделяемую среду передачи данных, замкнутую, как правило, в кольцо (за исключением Arc Net) и представляющую общий ресурс. Метод доступа к среде не является случайным (как Ethernet) и основан на передаче станциям права на использование среды передачи в определенном порядке. Это право передается с помощью кадра (импульса) специального формата, называемого маркером или токеном (token). Среди сетей с подобным методом доступа наиболее распространена разработанная в 1984 г. фирмой IBM технология Token Ring, на ее основе в 1985 г. был принят стандарт 802.5. Принцип работы Token Ring представлен на рис. 4.17.

Маркерное кольцо – распространенный вариант локальной сети. Доступом к сети управляет циркулирующая по кольцу последовательность бит, называемая маркером. Чтобы послать сообщение, станция должна сначала дождаться прихода маркера, удалить маркер из кольца, направить в кольцо пакет с адресом (или последовательность пакетов) и в конце снова направить в кольцо маркер. Станции могут удалять адресованные им пакеты, сохраняя в кольце

154

маркер. Показано, как станция А посылает сообщение станции С, которая получает его, а затем посылает сообщение станциям А и D.

Рис. 4.17. Принцип работы ЛВС Token Ring

В этих сетях скорость передачи достигает 16 Мбит/с, максимальное количество станций – 96, максимальная длина – 120 м.

С середины 90-х годов начался интенсивный переход от ЛВС начального уровня со скоростями 10 – 20 Мбит/с к ЛВС со скоростями 100 Мбит/с и выше. Структура стандартов IEEE 802.x представлена на рис. 4.18.

155

Рис. 4.18. Структура стандартов IEEE 802.x

Первая высокоскоростная сеть на оптическом кабеле FDDI (Fiber Distributed Data Interface) была разработана в 1988 г. Это кольцевая сеть (двойное кольцо) протяженностью 100 км с маркерным методом доступа со скоростью до 100 Мбит/с. По своим размерам такие сети выходят за рамки общепринятых ЛВС, приближаясь к ГВС. На начальном этапе эта сеть не имела широкого распространения ввиду высокой стоимости сетевого оборудования, однако с появлением варианта этой сети на витой паре (CDDI), а также отработкой технологии оптических интерфейсов она активно внедряется.

Начиная с середины 90-х годов начался массовый переход традиционных ЛВС на скорости 100 Мбит/с. Это уже упоминавшийся стандарт Fast Ethernet, который по многим параметрам протоколов и технических средств совместим с начальным Ethernet, что облег-

156

чает переход к новой сети при сохранении ряда старых компонентов. Конкуренцию этой сети составляет технология 100 VGAnyLAN, которая обеспечивает скорость 100 Мбит/с и поддерживает оба, самых распространенных на сегодняшний день протоко-

ла – Ethernet и Token Ring.

Структура технических средств ЛВС. 1. Передающая среда,

используемая в ЛВС, представлена тремя типами: витая пара, коаксиальный кабель и оптический кабель.

Витая пара – наиболее распространенный и дешевый вариант канала, традиционно используемый в телефонии. Этот вид каналов в наименьшей степени защищен от помех и возможностей несанкционированного доступа. Существует пять категорий кабеля на основе витой пары, различающихся по электротехническим и высокочастотным характеристикам. Так, витая пара пятой категории используется в высокоскоростных ЛВС. Данные кабели могут быть экранированными и неэкранированными. Стоимость высококачественного кабеля на основе витой пары достаточно высока.

Коаксиальный кабель используется, как правило, в сетях Ethernet, имеет лучшие высокочастотные характеристики и помехозащищенность по сравнению с витой парой, однако переход на быстрые протоколы Ethernet связан с переходом его на витую пару или оптический кабель.

Оптический кабель сравнительно новая и наиболее перспективная передающая среда, значительно превосходящая по своим коммуникационным свойствам, рассмотренным выше, другие передающие среды. В то же самое время она имеет достаточно сложную структуру и требует более детального описания.

Волоконно-оптические коммуникации были практически созданы в середине 60-х годов прошлого столетия на базе двух ключевых компонентов: создания твердотельных источников излучения света и получения чистого стекла. Эти работы были основаны на более ранних экспериментах, открывших принцип световода. В основе его – свойство неограниченного распространения света в воде и других средах.

Развитие этой технологии идет по пути создания более мощных источников излучения и уменьшения примесей в стекле (современное оптическое волокно в десять тысяч раз прозрачнее оконного стекла).

157

Другим фактором, повлиявшим на эволюцию волоконнооптической линии связи (ВОЛС), стала разработка производительных приемников, принимающих световой сигнал в большом динамическом диапазоне.

ВОЛС осуществляется посредством трех главных компонентов: оптического кабеля, оптического трансивера (передатчика) и приемника оптического излучения. Сначала электрические сигналы поступают на вход трансивера, который преобразует их в световые импульсы и направляет в волокно. Импульсы света принимаются на другом конце приемником и вновь преобразуются в электрический сигнал. Чем чаще передаются импульсы, тем больше пропускная способность канала.

Оптическое волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2. Сердцевина имеет больший показатель преломления. Таким образом, световой сигнал благодаря внутреннему преломлению или отражению не покидает оптически более плотной среды (рис. 4.19). По диаметру сердцевины волокно подразделяется на одно- и многомодовое.

Рис. 4.19. Распространение света в волокне

В одномодовом волокне диаметр световодной жилы порядка 8 – 10 мкм, т.е. сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мо-

158

да). В многомодовом волокне размер световодной жилы порядка 50 – 60 мкм, что делает возможным распространение большого количества лучей (много мод). Многомодовое волокно, в свою очередь, подразделяется на градиентное, имеющее градиентный профиль показателя преломления световой области с максимумом на оси и ступенчатое, имеющее постоянный показатель преломления сердцевины (табл. 4.2).

 

 

 

Таблица 4.2

 

Основные характеристики волокна

 

 

 

 

 

Характеристика

Многомодовое

Одномодовое

Профиль показа-

Ступенчатый

Градиентный

Ступенчатый

теля преломления

 

 

 

Длина волны из-

0,85

0,85

1,3

лучения, мкм

1,3

1,3

1,55

Диаметр сердце-

50 – 1000

50 – 60

4 – 10

вины, мкм

 

 

 

Диаметр оболоч-

125 – 1050

124 – 140

75 – 125

ки, мкм

 

 

 

Композиционный

Стекло/Стекло,

 

 

состав серцеви-

стекло/пластик,

Стекло/Стекло

Стекло/Стекло

на/оболочка

пластик/пластик

 

 

Полоса пропуска-

100

500

2000 и выше

ния, МГц км

 

 

 

Затухание определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Затухание связано с длиной волны излучения, вводимого в волокно. Потери на поглощение зависят от чистоты материала, потери на рассеяние определяются неоднородностями показателя преломления материала.

Дисперсия характеризует зависимость скорости распространения сигнала от длины волны вводимого излучения. Поскольку источники света (светодиоды или лазеры) излучают некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и, тем самым, порождает искажение сигналов.

Одномодовое волокно обладает самыми лучшими характеристиками по полосе пропускания и затуханию. Однако чтобы реализовать преимущества одномодового волокна, необходимо исполь-

159

зовать дорогостоящие источники излучения и другое вспомогательное оборудование. Само одномодовое волокно также существенно дороже многомодового.

Многомодовое волокно более удобно при монтаже, на него рассчитаны доступные и дешевые излучатели, но оно обладает гораздо большим затуханием и меньшей полосой пропускания. В связи с этим многомодовое волокно вполне приемлемо для локальных сетей связи, но недостаточно для магистральных линий.

Оптические передатчики подразделяются на светоизлучающие диоды и лазеры. Первые сравнительно дешевые, имеют большой срок службы и применяются в многомодовых линиях связи ввиду невысокой мощности излучения света и слабой фокусировки. Вторые лишены последних недостатков и используются в одномодовых линиях связи, однако их стоимость существенно выше.

В состав приемного устройства ВОЛС входят фотоприемник и электрическая цепь.

Среди основных преимуществ ВОЛС необходимо отметить следующие:

широкая полоса пропускания, которая для многомодового волокна более чем на порядок превышает полосу пропускания витой пары, а для одномодового это превышение более чем на два порядка;

большие расстояния между станциями, так для одномодового волокна расстояние между станциями составляет 50 – 60 км;

высокая помехозащищенность – его нечувствительность к электрическим помехам, возможность прокладки линий вблизи мощных и высоковольтных электрофизических устройств;

гальваническая развязка элементов сети, т.е. волокно обладает изолирующим свойством, отсутствует потребность в заземлении;

взрыво- и пожаробезопасность – отсутствие искрообразования, позволяет использовать его на химических и нефтеперерабатывающих предприятиях при обслуживании технологических процессов повышенного риска.

2. Компьютеры, включенные в сеть, различаются по своему функциональному назначению:

рабочие станции – индивидуальные компьютеры пользователей;

160