Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Solid Support Oligosaccharide Synthesis

.pdf
Скачиваний:
14
Добавлен:
15.08.2013
Размер:
5.18 Mб
Скачать

260 SOLID-PHASE SYNTHESIS OF BIOLOGICALLY IMPORTANT GLYCOPEPTIDES

Ph

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

OBz

 

OH

 

 

OBz

 

 

 

HO

O

 

 

 

 

BzO

O

 

O

 

O

 

 

O

 

O

HO

 

BzO

i, ii

BzO

 

 

 

 

+

BzO

 

 

TrocNH

 

N3

 

 

 

 

 

 

 

N3

 

TrocNH

 

 

 

 

O

 

O

 

 

O

NH

 

 

 

8

 

1

 

5

 

 

 

 

 

 

 

 

 

 

 

OtBu

 

 

 

 

 

 

 

 

 

 

OtBu

 

 

 

 

 

 

 

Fmoc-HN

 

 

CCl3

 

 

 

Fmoc-HN

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 5

i

 

 

 

OBz

 

 

 

 

OBz

 

 

 

O

 

 

 

 

 

 

BzO

O

 

 

 

 

 

 

 

BzO

 

 

BzO

O

O

 

 

 

 

 

 

AcNH

 

 

 

BzO

 

 

 

 

 

 

 

 

 

 

OBz

 

 

iii, iv

 

TrocNH

 

 

 

AcO

 

 

 

OBz

HO

 

BzO

O

O

 

 

 

 

 

BzO

O

 

 

 

BzO

O

O

O

 

AcNH

 

 

 

 

 

AcNH

 

 

BzO

TeocNH

N3

 

 

 

O

 

 

 

 

 

 

 

10

 

 

 

 

 

O

 

 

 

 

 

OH

 

 

 

9

 

Core 4

Fmoc-HN

 

 

 

 

OtBu

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

Fmoc-HN

 

 

 

 

 

 

 

 

 

O

i, TMSOTf; ii, AcOH (80%); iii, Zn, Ac2O, AcOH, THF; Ac2O, pyridine; iv, TFA (95%)

Scheme 13.3 Synthesis of the core 4 building block.

trisaccharide conjugate 9. Its azido function and the Troc-protected amino functions were simultaneously converted into the acetamido functions. Cleavage of the tert-butyl group using TFA gave core 4 building block 10 suitable for solid-phase glycopeptide syntheses. The synthesized building blocks were incorporated at the different positions in the syntheses of two partial sequences of the repeating units of the two human intestinal mucins MUC2 and MUC3 (positions indicated by * in Scheme 13.4) by multiple-column solid-phase synthesis (MCPS) in a manual 20-column multiple synthesizer.16 Wang resin17 served as the polymer support. Coupling of the glycosylated amino acids was performed using O-(1-benzotriazole- 1-yl)- N,N,N′,N′-tetramethylammonium tetrafluoroborate (TBTU)18 as coupling reagent. The nonglycosylated amino acids were applied as their Fmoc/Pfp esters using Dhbt-OH as activating agent which allows a visual control of peptide bond formation.19 Side chains of threonine and serine were protected as their tert-butyl ethers; those of glutaminic acid, as their tert-butyl esters; and histidine was tert-butyloxycarbonyl-protected. Final detachment of the synthesized glycopeptides from the resin using TFA proceeded with simultaneous removal of the acid-sensitive side-chain protecting groups. It was followed by removal of the O-acetyl and -benzoyl protecting groups by transesterification with sodium methanolate/methanol.

13.2 BUILDING-BLOCK APPROACH 261

Scheme 13.4 Partial sequences of MUC2 and MUC3.

13.2.1.2 Glycopeptides Carrying Tumor-Associated Antigens In cancer cells, glycoproteins show glycosylation patterns different from those of glycoproteins in normal cells. The carbohydrate side chains are incompletely developed. Different tumor-associated carbohydrate structures such as the TN (GalNAcα-O-Ser/Thr), TF or T(Gal(β1→3)GalNAcα-O-Ser/Thr), SialylTN(NeuNAc(α2→6)GalNAcα-O- Ser/Thr), and the two regioisomeric SialylT Gal(β1→3)[NeuNAc(α2→6)]GalNAcα-O- Ser/Thr) and NeuNAc(α2→3)[Gal(β1→ 3)]GalNAcα-O-Ser/Thr antigens have been identified.20 They are the result of premature completion of glycosylation in cancer cells, due to changes in the expression and reactivity of glycosyltransferases.21

The tumor-associated TN antigen structure was used in the synthesis of glycopeptides that then were coupled to carrier proteins in order to obtain synthetic antigens.9b As an example, a multiple-antigen glycopeptide (MAG) was synthesized on solid phase and subjected to immunological evaluation.22 The presentation of peptidic epitopes to the immune system can be achieved by means of a polylysine core.23 To introduce an efficient antibody response, a conjugate of a B-cell epitope (TN antigen) and a T-cell epitope, the T-cell epitope of the VP1 protein of polio virus type 1,24 was presented by the multiple antigen glycopeptide 11 (Scheme 13.5).

The synthesis of the TN antigen building block 16 was performed starting from tri-O-acetyl-D-galactal 12 (Scheme 13.6).25 Glycosylation of Fmoc serine tert-butyl ester 14 with the azidogalactosyl chloride 13 using Ag2CO3/AgClO426 as promotors was followed by reduction and acetylation of the 2 position to give compound 15. Cleavage of the tert-butyl ester was performed in formic acid, and the acetyl groups of the sugar moeity were removed by NaOMe/MeOH.

For the synthesis of the multiple antigen 11, a β-alanyl spacer was attached to Wang resin17 and the lysine core was constructed by coupling successively two levels of FmocLys(Fmoc)OH using TBTU as the carboxyl activating agent. The conjugate was sequentially elongated at the four amino functions in order to assemble the T-cell epitope sequence. Finally, Fmoc-protected glycosyl serine 16, deprotected in its carbohydrate portion, was coupled to the N termini of this construct. After Fmoc removal, the conjugate was detached from the resin using TFA/water/ethanedithiol 95/2.5/2.5 with simultaneous cleavage of the acid-labile amino acid side chain protecting groups. Preliminary immunological tests showed that the MAG system 11 is recognized by the monoclonal anti-TN antibodies 83D4 (IgM) and MSL128 (IgG).22

The synthesis of a glycopeptide from the homophilic recognition domain of epithelial cadherin 1 (E-CAD1) carrying the TN structure was performed using the novel condensing reagent N,N-N′,N′-bis(tetramethylene)-O-pentafluorophenyl- uronium hexafluorophosphate PfPyU 18.27 The cadherins constitute a family of about 30 cell surface glycoproteins that are involved in the Ca2+-dependent adhesion of

262 SOLID-PHASE SYNTHESIS OF BIOLOGICALLY IMPORTANT GLYCOPEPTIDES

B cell epitope

 

 

saccharidic

 

T cell epitope

 

 

 

OH

 

 

peptidic

 

 

 

HO

 

 

 

HO

O

 

 

 

 

 

AcNH

 

 

 

O

 

 

 

 

 

Lys-Leu-Phe-Ala-Val-Trp-Lys-Ile-Thr-Tyr-Lys-Asp-Thr-Lys

 

H2N

 

 

 

 

 

 

O

OH

 

 

 

HO

 

 

 

HO

O

 

Lys

 

 

 

AcNH

 

 

 

O

 

 

 

H2N

 

Lys-Leu-Phe-Ala-Val-Trp-Lys-Ile-Thr-Tyr-Lys-Asp-Thr-Lys

 

 

 

 

 

OH

 

 

O

 

 

 

HO

 

 

 

HO

O

 

Lys β-Ala

 

 

 

AcNH

 

 

 

O

 

 

 

 

 

Lys-Leu-Phe-Ala-Val-Trp-Lys-Ile-Thr-Tyr-Lys-Asp-Thr-Lys

 

H2N

 

 

 

 

 

 

 

O

OH

 

 

 

HO

 

 

 

HO

O

 

Lys

 

 

 

AcNH

O

Lys-Leu-Phe-Ala-Val-Trp-Lys-Ile-Thr-Tyr-Lys-Asp-Thr-Lys

H2N

O

11

Scheme 13.5 Schematic representation of the multiple-antigen glycopeptide 11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

OtBu

 

OAc

 

 

 

 

 

 

 

 

 

 

 

 

 

FmocHN

AcO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

OAc

 

 

 

 

 

14 O

 

 

AcO

 

OAc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

 

AgCO3/AgClO4

 

N3

 

AcO

 

CAN, NaN 3

O

 

 

 

 

 

 

AcO

O

 

 

 

 

AcO

Cl

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LiCl

N3

 

 

 

 

2. H2S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OtBu

12

 

 

13

 

 

 

 

3. Ac2O

 

 

 

FmocHN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

1. HCOOH

 

 

 

HO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. NaOMe/MeOH

 

 

AcHN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FmocHN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 13.6 Synthesis of the TN-antigen building block.

13.2 BUILDING-BLOCK APPROACH 263

cells.28 They play an important role in the morphogenesis of cells and are found on every tissue-forming cell type. First attempts to synthesize the E-CAD1 sequence SHAVSSNGEAVE using TBTU as the coupling reagent gave only small amounts of the target compound, presumably because of a backfolding effect of the β-sheet-forming sequence. Comparative coupling reactions of Fmoc-Ala-OH to H-Val-OtBu showed that the coupling rate induced by PfPyU is 8 times higher than that induced by TBTU. The synthesis of a partial sequence of the homophilic recognition region of E-CAD1 containing α-GalNAc at serine within the turn structure using PfPyU as acylating reagent and β-alanyl-TentaGel S29 loaded with the allylic HYCRON30 anchor conjugate of Fmoc-Glu(OtBu)-OH as the solid support gave a high yield of desired compound 19 (Scheme 13.7).

 

 

O

 

 

 

 

 

 

 

O

 

O

 

 

FmocHN

 

O

 

O

O

O

O

 

 

N

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

 

 

 

 

 

 

17

 

 

 

 

 

 

 

 

 

COOtBu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

F

 

 

 

 

 

 

 

a

 

 

 

 

O

 

F

 

 

 

 

 

 

 

 

 

PF6

 

 

 

 

 

 

 

 

 

b

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

N N

 

 

 

 

 

 

 

 

 

 

d

 

PfPyU 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

HO

O

 

 

 

OH

O

 

 

O

OH

O

O

O

 

 

 

O

 

O

 

 

 

 

 

 

 

H

 

H

H

H

 

 

H

H

 

 

 

 

 

 

 

 

 

N

 

 

N

 

N

 

N

 

 

 

N

 

N

OH

H2N

N

 

 

N

 

N

 

 

N

 

 

N

 

O

H

O

 

H

O

H

O

 

H

O

 

H

O

 

N

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NHAc

 

 

 

 

 

HO O

 

NH

 

 

 

 

O

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

OH HO

a) morpholine/DMF; 3 eq. Fmoc-Xaa-OH, PfPyU, sym-collidine, iPr2NEt, NMP; b) cat. Pdo(PPh3)4, N-methylaniline,

DMF/DMSO (1:1); c) TFA/H2O/TIS (95/2.5/2.5); d) NaOMe/MeOH, pH = 9.5.

= TentaGel S.

Scheme 13.7 Solid-phase synthesis of a glycopeptide from the homophilic recognition domain of epithelial Cadherin 1 using the new coupling reagent PfPyU.

The PfPyU/HYCRON methodology also proved efficient in the synthesis of a lipoglycopeptide of the E-CAD1 recognition region sequence. The synthesis of the glycododecapeptide amphiphile was performed using a convergent solid-phase approach.31 A fragment of the N-terminal tetrapeptide with the lipophilic tail group was synthesized first (Scheme 13.8).

264 SOLID-PHASE SYNTHESIS OF BIOLOGICALLY IMPORTANT GLYCOPEPTIDES

Fmoc-Val-HYCRON-bAla-AMPS

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.) morpholine, DMF;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boc-Ala-OH, PfPyU, DIEA, sym-collidine, HOAt, NMP;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac2O, pyridine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.) TFA, DCM;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fmoc-His(Trt)-OH, PfPyU, DIEA, sym-collidine, HOAt, NMP;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac2O, pyridine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.) morpholine, DMF;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fmoc-Ser(tBu)-OH, PfPyU, DIEA, sym-collidine, HOAt, NMP;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac2O, pyridine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.) morpholine, DMF;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Cet)2Einv-Succ-OH, PfPyU, DIEA, sym-collidine, HOAt, NMP;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac2O, pyridine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.) Pd(Ph3)4, morpholine

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

OtBu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

O

 

H

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

N

N

 

N

N

 

N

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

H

 

O

H

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H-Ser(tBu)-Ser(aAc3GalNAc)-Asn(Trt)-Gly-Glu(OtBu)-Ala-Val-Glu(OtBu)-HYCRON-bAla-

 

 

 

 

 

 

 

 

 

 

 

1.) TFA/H2O/TIS

 

 

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.) Pd(PPh3)4, morpholine

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.) NaOMe/MeOH

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

O

 

 

 

 

 

 

 

O

 

H

O

OH

O

 

H O

 

 

OH

O

 

 

O

O

 

 

 

O

 

H

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

H

 

 

H

 

 

H

 

Cet

 

N

 

N

N

 

H

N

N

N

N

 

N

N

 

N

 

N

 

N

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

H

O

 

N

O

 

 

H

O

 

 

H

O

H

O

 

H

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Cet

O

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

NHAc

 

 

 

 

 

 

 

HO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

HOOH

 

 

 

 

 

 

 

 

 

 

 

Scheme 13.8 Synthesis of a lipoglycopeptide by means of fragment condensation methodology.

The allylic HYCRON anchor conjugate 20 of Fmoc-Val-OH and β-alanyl- polystyrene was used as the starting material, and the polymer-bound SHAV tetrapeptide was synthesized according to the Fmoc methodology. However, the second amino acid alanine was coupled as the Boc-protected derivative in order to minimize diketopiperazine formation on the stage of the amino-deprotected resin-linked dipeptide. Polymer-bound tetrapeptide was then coupled with the lipophilic succinylglutaminic ester derivative.32 Owing to the very mild cleavage of the HYCRON anchor by Pd(0)-catalyzed allyl transfer to morpholine leaving acidand base-sensitive protecting groups unaffected, the fully protected conjugate 21 was

13.2 BUILDING-BLOCK APPROACH 265

obtained in pure form. Fragment 21 was now coupled to the E-Cadherin octapeptide fragment H-S(tBu)S(αAc3GalNAc)N(Trt)GE(OtBu)AVE(OtBu) linked to the HYCRON resin 22 using a 1.7-fold excess and PfPyU/sym-collidine/ diisopropylethylamine as the activating reagent. After cleavage of the acid-labile protecting groups using TFA/H2O/triisopropylsilane (95:2.5:2.5), the obtained lipoglycopeptide was detached from the resin by Pd(0)-catalyzed allyl transfer to morpholine as trapping agent. Final removal of the O-acetyl groups from the carbohydrate moiety by Zemplén transesterification yielded the target compound 23. The synthesis demonstrates both the versatility of the allylic HYCRON system, which can be used to generate protected peptide fragments for fragment condensation reactions, and the efficiency of PfPyU as condensing reagent.

13.2.1.3 Glycopeptides Containing Sialic Acid The sialyl-TN structure is considered to be one of the most important tumor-associated antigens of epithelial tumors.33,34 It is found on mucins35 on glycophorin20a,36 and on the envelope glycoprotein gp120 of the human immunodeficiency virus HIV.37,38 The solid-phase synthesis of a sialyl-TN glycoundecapeptide of the MUC1-repeating unit has been described.39 The sialyl-TN-threonine building block 28 was obtained by a stereoand regioselective sialylation of galactosamine threonine conjugate 24 with the sialyl xanthate 2540 and methylsulfenyl triflate as the promoter in a yield of 32% (Scheme 13.9).

 

 

 

 

 

 

OAc

COOMe

 

 

 

 

 

 

AcO

OAc

 

 

OH

 

 

 

 

O O

 

 

 

 

 

 

HO

 

OAc

COOMe

AcHN

HO

O

 

AcO

 

 

 

 

 

OAc

S

 

R1O

 

 

 

 

AcO

 

 

 

AcNH

+

 

MeSOTf

O

 

AcHN

O S OEt

R1O

 

O

 

 

 

 

 

 

 

 

OtBu

AcO

 

 

 

 

AcNH

 

 

 

 

 

 

 

 

FmocHN

 

 

 

 

 

O

 

 

 

 

 

 

 

 

24 O

 

 

25

 

 

 

OR2

FmocHN

O

26 R1 = H, R2 = tBu

27 R1 = Ac, R2 = tBu

28 R1 = Ac, R2 = H

Scheme 13.9 Synthesis of the sialyl-TN building block 28.

O-Acetylation and subsequent cleavage of the tert-butyl ester with TFA gave building block 28. Solid-phase glycopeptide synthesis was performed using an aminomethylpolystyrene (AMPS) resin modified with the HYCRON anchor. Coupling of the Fmoc amino acids was performed with TBTU/HOBt and a 4.2-fold excess of the corresponding N-protected amino acids. After final N-acetylation of the terminal amino acid, the completely protected glycopeptide was cleaved from the resin by Pd(0)-catalyzed allyl transfer to morpholine. Cleavage of the acid-labile

266 SOLID-PHASE SYNTHESIS OF BIOLOGICALLY IMPORTANT GLYCOPEPTIDES

amino acid side-chain protecting groups was achieved using TFA. In the case of sialic acid–containing glycopeptides, the deprotection of the carbohydrate moiety is the crucial step. Systematic investigations showed that the application of NaOH in aqueous MeOH at pH 10 results in the removal of the acetyl groups whereas the cleavage of the neuraminic acid methyl ester requires a careful treatment with 5 mM aqueous NaOH at pH 11.5. Under these conditions the saponification of the NeuNAc methyl ester proceeded without side reaction and the glycoundecapeptide 29 was obtained in an overall yield of 23% (Scheme 13.10). At a pH lower than pH 11 no hydrolysis of the methyl ester took place, at pH higher than pH 11.5 a number of side reactions including the β-elimination of the carbohydrate moiety occurred.

Independently and at the same time the incorporation of a sialyl-TN-antigen building block in the synthesis of a fragment from the HIV gp120 glycoprotein was described.41

The solid-phase synthesis of the B-chain of human α2HS glycoprotein carrying the (2→3) sialyl-T-antigen has been reported.42 The sialyl-T serine building block 35 suitable for solid-phase synthesis was constructed starting from preformed sialyl-galactose disaccharide 30 (Scheme 13.11). The problem of selective protection and deprotection of the sialic acid carboxylic function was solved by formation of the lactone structure in 30 as has earlier been shown in the synthesis of sialyl Lewis x glycopeptides.43

Glycosylation of the Fmoc-protected glycosyl serine allyl ester 31 with the trichloroacetimidate 30 using BF3EtO2 as the promotor yielded the sialyl-T-antigen serine conjugate 32. Cleavage of the silyl ether with 80% aqueous TFA and subsequent benzylidenation gave compound 34. The azido function was converted to the acetamido group using thioacetic acid–pyridine.44 Finally, the allyl ester was cleaved by Pd(0)-catalyzed allyl transfer45 to give the desired building block 35. The stepwise synthesis of the 27 amino acid–containing glycopeptide was performed on a Wang resin using DCC/HOBt as activating agent. The side-chain functional groups of the nonglycosylated amino acids were protected with Trt groups for cysteine,

 

 

 

 

 

OH

COOH

 

 

 

 

 

 

 

 

 

HO

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcHN

O O

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

HO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcNH

 

 

 

 

 

O

O

O

 

H

O

H

O O

H

O

 

 

AcHN

 

 

 

 

 

 

 

 

N

N

N

 

N

N

N

 

N

N

N

 

N

 

 

 

 

 

 

 

 

 

H

O

 

H

O

 

H

O

H

O

COOH

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

HO

 

 

 

 

 

 

N

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Scheme 13.10 A sialyl-TN-glycoundecapeptide of the MUC1 repeating unit.

 

 

 

 

 

 

13.2

BUILDING-BLOCK APPROACH 267

OBn

 

 

 

 

 

 

 

HO

OTBDMS

O

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

O

 

OBn

O

 

 

 

 

HO

BnO

 

 

 

 

 

 

 

 

 

 

 

 

 

O O

 

O

 

 

 

+

 

N3

AcHN

 

 

 

NH

 

BnO

 

 

OBn

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

CCl3

 

 

OAll

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FmocHN

 

30

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

OBn

O

 

 

OBn

 

OR2

 

 

BnO

 

OBn

 

O

R1O

32 R1 = H, R2 = TBDMS

BF3*OEt2

 

O

 

O

O

AcHN

 

O

 

 

 

 

 

 

33 R1 = R2 = H

 

 

 

 

O

 

 

BnO

 

 

 

OBn

 

N3

34 R1 = R2 = CHPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

OAll

 

 

 

 

 

 

 

FmocHN

 

 

 

 

 

 

 

 

 

O

 

 

 

OBn

 

 

 

Ph

 

Pd(0)

 

 

O

 

OBn

 

O

 

 

 

OBn

 

 

 

 

BnO

O

O

 

 

 

 

 

 

 

 

O

 

O

 

O

 

 

AcHN

 

O

O

 

 

 

BnO

 

 

 

 

 

 

 

 

 

 

 

OBn

AcNH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

35

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FmocHN

 

 

 

 

 

 

 

 

 

O

Scheme 13.11 Synthesis of a sialyl-T building block.

glutamine, and histidine; Boc for lysine; and the Pmc group46 for arginine. Detachment of the glycopeptide from the resin using TFA/H2O/thioanisole/ 1,2-ethanedithiol/phenol yielded the desired glycopeptide as well as monoand dibenzylated byproducts. The combined fractions were thus treated with 1 M TMSOTf/TFA47 in the presence of thioanisole and then with aqueous ammonium fluoride for complete deprotection to yield the target compound 36 (Scheme 13.12). The usual debenzylation procedure by Pd/C-catalyzed hydrogenation was unsuccessful because of the simultaneous desulfurization of the cysteine residue.

Besides acetyl, benzoyl, and benzyl protecting groups for the carbohydrate hydroxyl groups, silyl, isopropylidene, and p-methoxybenzyl groups have also been employed in solid-phase glycopeptide synthesis. The synthesis of a glycopeptide

OH

 

COOH

 

 

 

 

OH

OH

 

OH

HO

HO

HO

 

 

 

O

 

O

 

O

AcHN

O

O

HO

 

 

 

 

 

 

OH

 

AcNH

 

 

 

 

O

36

H2N-TVVQPSVGAAAGPVVPPCPGRIRHFKV-OH

Scheme 13.12 B chain of human α2HS glycoprotein carrying the sialyl-T-antigen.

268 SOLID-PHASE SYNTHESIS OF BIOLOGICALLY IMPORTANT GLYCOPEPTIDES

 

OTBDPS

 

TBDPSO

O

 

O

O

TBDPSO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTBDPS

TBDPSO O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

37

H2N-Gly-Glu(tBu)-Hyp(tBu)-Gly-Ile-Ala-Gly-Phe

 

 

 

 

 

 

N

 

 

 

 

O

Gly-Glu(tBu)-Gln(Trt)-Gly-Pro-Lys(Boc)-O-TentaGel S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TFA/H2O/thioanisole/ethanedithiol 87.5:5:5:2.5

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

HO

O

 

OH OH

HO

 

 

 

 

 

 

 

OH

 

OH O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

38

H2N-Gly-Glu-Hyp-Gly-Ile-Ala-Gly-Phe

 

 

 

 

N

 

 

O

Gly-Glu-Gln-Gly-Pro-Lys-OH

 

 

 

 

 

 

 

 

Scheme 13.13 Synthesis of a type II collagen analog using acid-labile carbohydrate protection groups.

related to the immunodominant fragment of type II collagen was achieved employing acid-labile silyl and isopropylidene protecting groups (Scheme 13.13).48,49 The solid-phase synthesis was performed using crosslinked polystyrene grafted with poly(ethylene glycol) chains (TentaGel S)29 carrying an acid labile 4-alkoxybenzyl alcohol linker as the solid support. Coupling reactions were performed using DIC/HOBt for the unglycosylated amino acids and DIC/HOAt for the glycosylated amino acid.

The detachment of the glycopeptide from the resin and deprotection of the amino acid side chains as well as the removal of the acid-labile carbohydrate protecting groups were simultaneously carried out using TFA/H2O/thioanisole/ethanedithiol (87.5:5:5:2.5). This treatment proceeded without affecting the glycosidic bonds and furnished the target molecule 38.

13.2.2 N-Glycopeptides

13.2.2.1 N-Glycopeptides Carrying the Sialyl Lewis A Structure The regioisomeric tetrasaccharide structures sialyl Lewis A (sLea) (NeuAcα(2→3)Galβ(1→3) [Fucα(1→4)]GlcNAc) and sialyl Lewis X (sLex)50 (NeuAcα(2→3)Galβ(1→4)

13.2 BUILDING-BLOCK APPROACH 269

[Fucα(1→3)]GlcNAc) occur in saccharide side chains within the N-terminal domain of various glycoproteins on the surface of leukocytes, for example PSGL-1 (P-selectin–glycoprotein–ligand-1).51 Within inflamed tissues, cytokines are released, which induces the expression of E- and P-selectins on the endothelial cells. The recognition of sLea and sLex by E- and P-selectin induces leukocyte adhesion on the vascular endothelial surface. This primary binding is followed by stronger protein–protein interactions (e.g., between ICAM-1 and LFA-1) and subsequent diapedesis, the passing of the leukocyte through the endothelial wall, and its invasion into the site of infection. The prevention of the first sLea/sLex-selectin interaction at the beginning of the inflammatory adhesion cascade has been thoroughly investigated in order to develop a therapy of acute and chronic inflammation processes.52 The synthesis of a glycopeptide with the sLea structure bound to a sequence derived from the N-terminal region of the surface glycoprotein PSGL-1 was performed using the building-block approach.53 The complex sLea building block 47 (Scheme 13.14) was

Ph

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

AcO

OBn

 

 

 

AcO OBn

O

O

 

 

 

 

 

 

 

 

 

 

Hg(CN)2

 

 

 

 

 

O

 

O

+

AcO

O

 

 

O

O

 

 

N3

 

 

 

O

 

 

 

 

AcO

O

 

 

 

 

 

HO

 

 

N3

 

AcO Br

 

 

 

 

 

NHAc

 

 

 

 

 

 

NHAc

 

 

 

 

 

AcO

41

 

 

 

 

 

 

39

 

 

 

 

40

 

 

 

 

 

 

1. NaCNBH3, HCl-Ether

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnOOBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

O

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. NaOMe, MeOH

 

 

 

42

 

SEt

 

 

 

 

 

 

 

 

 

 

 

 

CuBr2, Bu4NBr

 

 

 

 

 

BnOOBn

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

 

 

 

 

 

 

 

 

 

OAc

 

 

Me

O

OBn

 

 

 

 

OAc CO

Me

BnOOBn

 

 

 

 

 

 

OAc CO

 

OBn

 

AcO

 

2

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

AcO

2

OH OBn

 

 

 

AcHN

O SPh

Me

 

 

OBn

 

 

 

 

O

O

 

O

 

 

 

AcHN

O

 

 

 

 

 

AcO

44

 

 

OBn

 

 

 

O

N3

 

 

 

 

 

 

 

 

 

O

O

 

 

 

OBn

 

 

 

 

 

AcO

 

 

 

 

NHAc

 

 

NIS/TfOH

 

AcO

O

 

O

 

 

 

 

OH

 

 

 

 

 

N3

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

45

 

 

 

 

 

 

 

AcO

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NHAc

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

 

 

 

1. H2/Raney-Ni

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

HOOC

 

 

 

 

 

 

 

43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fmoc-HN

OAll

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HATU/HOAt/DIEA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Pd(PPh3)4, N-methylaniline

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnOOBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

 

Me

O

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc CO

Me

 

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

2

OH OBn

 

 

H

 

 

 

 

 

 

 

 

 

 

 

O

O

O

 

 

 

 

 

 

 

 

 

 

 

AcHN

 

O

N

NHFmoc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

O

O

NHAc O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

Scheme 13.14 Synthesis of a sialyl Lewis A buiding block for solid-phase glycopeptide synthesis.

Соседние файлы в предмете Химия