Скачиваний:
40
Добавлен:
15.08.2013
Размер:
278.38 Кб
Скачать

13. Diazotization of amines and dediazoniation of diazonium ions

657

hydroxy group. Yoneda166 found a highly effective preparation of aryltriflates

by

the thermal or photochemical de-diazoniation of arenediazonium tetrafluoroborates in trifluoromethanesulfonic acid. The yields with 19 substituted benzenediazonium salts are, with two exceptions, in the range of 73 93% at the appropriate temperature (60 160 °C) or by using a high-pressure mercury vapor lamp at 12 °C.

Activity on new mercapto-de-diazoniations was small in the last two decades, except for a recent investigation of the use of thioglycolic acid forming arylthioglycolic acids167.

F. Substitutions of the Diazonio Group by Carbonyl and Sulfonyl Groups

It has been known for a long time that CO and SO2 react with aryl radicals and that the adducts formed are converted, in the presence of cupric halides as ligand transfer reagents, to arenecarboxylic halides and arenesulfonyl halides. The importance of a ligand transfer reagent was realized rather late, in 1977, by Doyle168. Even in a recent paper169, using highly pressurized CO as reagent and CuCl2, the yields are rather low (36 54% with seven diazonium salts). Higher yields (82 85%) are reported for the reaction of benzenediazonium tetrafluoroborate with CO (9 atm) in acetonitrile with 2 mol% Pd(II) acetate170.

The chlorosulfo-de-diazoniation was discovered by Meerwein171 in 1957, but little used, although in the experience of the present author it may give reasonably good yields.

Aldehydes and ketones are formed in reactions with carbonyl compounds, e.g. oximes, diacetyl and CO C tetraalkyltin172 (see also Zollinger7m).

G. Metallo-de-diazoniations and Related Reactions

The replacement of the diazonio group by metals and related transition elements was investigated intensively until the mid-20th century, particularly by Nesmeyanov and coworkers (reviews173). Most intensively studied were mercury-de-diazoniations. Since about 1970 there has been very little activity in the whole field of aryl-element chemistry as far as arenediazonium salts are involved. This decrease is probably due to the lack of interest for technological purposes, and to the environmental problem, which the synthesis and the use of the compounds cause.

H. Photolytic Dediazoniations

Although it has been known since the early days of diazo chemistry that arenediazonium salt solutions are sensitive to light, photolytic dediazoniations have only marginal importance in organic synthesis. The recent successful photolytic fluoro-de-diazoniations of Yoneda and coworkers132 were discussed in Section III.C.

Photolytic dediazoniations are, however, important in image technology. These applications can be divided into four groups, namely (1) the use of products of heterolytic photo-de-diazoniation as Lewis acid catalysts in cationic polymerization, (2) the use of the nitrogen gas for the formation of light-scattering vesicles in a polymer layer, (3) the use of the dediazoniation process for rendering an irradiated polymer layer more or less soluble than the unexposed material and (4) the use of unexposed and, therefore, nondecomposed diazo compounds for dye formation by azo coupling reactions.

Chemical aspects of all four technologies were recently reviewed7n; here we review only briefly group (4) technology because it has some interest for general organic chemistry.

In 1924 the German company Kalle & Co. in Wiesbaden began production of ‘blueprint’ paper, i.e. a diazo reprographic paper. In that process a sheet coated with a diazonium compound was exposed to an optical image and developed by diazo coupling using a mono-

658

Heinrich Zollinger

or di-hydroxynaphthalene derivative at high pH under wet (later also dry) conditions. In the exposure step before development the diazonium compound was destroyed by photolytic dediazoniation; therefore the azo dye was formed only on those parts of the sheet which were not irradiated with visible light. Originally, 2-diazophenols were used as diazo components, later 1,2-naphthoquinone diazide (48). Nowadays, the most important compound is 2,5-diethoxy-4-morpholinobenzenediazonium tetrafluoroborate. Typical coupling components are acetoacetic anilide, 1-phenyl-3-carbamidopyrazolone-(5) and 2-hydroxy- 6-methoxy-3-naphthoic acid-20-toluidide for yellow, red and blue colors, respectively.

In the context of this technology Sus¨ investigated already in 1944174 the photolysis of o-quinone diazides. Equation 34 shows the photolysis sequence for 1,2-naphthoquinone diazide (48) formed in the diazotization of 2-amino-1-naphthol. The product of the photolytic step is a ketocarbene (49), which undergoes a Wolff rearrangement to a ketene (50). In the presence of water indene-3-carboxylic acid (51) is formed; this compound is highly soluble in water and can be removed in the development step. The reaction steps of equation 34 were investigated in recent years intensively, mainly by Canadian chemists175 (see also the monograph of Tidwell on ketenes176).

 

O

 

O

 

O

 

 

N2+

N2

 

 

 

hν

+ N2

 

 

 

(48a)

(48b)

 

(49)

(34)

O

COOH

C

H2O

(51)

(50)

The Wolff rearrangement is well known as a reaction of diazo ketones, i.e. of diazoalkanes with a carbonyl group in ˛-position. Reaction 34 demonstrates that diazotized aminonaphthols are mesomeric with naphthoquinone diazides (48b) and that they have therefore also the character of quinonoid diazo ketones (see also Section II.C of this chapter). Wolff rearrangements take place also thermally and catalyzed by silver ions.

IV. REFERENCES

1.B. C. Challis and A. R. Butler, in The Chemistry of the Amino Group (Ed. S.Patai), Wiley, London, 1968, pp. 305 320.

2.H. Zollinger, in The Chemistry of Functional Groups, Supplement C (Eds. S. Patai and

Z. Rappoport), Wiley, Chichester, 1983, pp. 603 669; (a) Sect. II.B; (b) pp. 644 646.

3.H. Zollinger, Diazo Chemistry II. Aliphatic, Inorganic and Organometallic Compounds, VCH Publ., Weinheim, 1995: (a) Chap. 2 and 4; (b) Sect. 2.6; (c) Chap. 11.

4.H. E. Fierz-David and L. Blangey, Grundlegende Operationen der Farbenchemie, 8th ed., Springer, Vienna, 1952 (English edition: Fundamental Processes of Dye Chemistry, Interscience, New York, 1959); (a) p. 244.

13. Diazotization of amines and dediazoniation of diazonium ions

659

5.K. H. Saunders and R. L. M. Allen, Aromatic Diazo Compounds, 3rd ed., Arnold, London, 1985:

(a)p. 7; (b) p. 23.

6.A. Engel, in Houben-Weyl. Methoden der organischen Chemie (Ed. D. Klamann), 4th ed., Vol.E 16a, Part II, Georg Thieme, Stuttgart, 1990, pp. 1053 1089.

7.H. Zollinger, Diazo Chemistry I. Aromatic and Heteroaromatic Compounds, VCH Publ.,

Weinheim,

1994:

(a) Chap. 2

and 3; (b) Sect. 2.2; (c) Sect. 2.6;

(d) pp. 54

 

55; (e) Sect. 3.4;

 

(f) Chap. 8

 

10;

(g) p. 202;

(h) pp. 231

 

233; (i) pp. 237

 

238;

(j) Table 10

 

6; (k) p. 247;

 

 

 

 

(l)Sect. 10.9; (m) pp. 242 243; (n) Sect. 10.13.

8.T. I. Godovikova, O. A. Rakitin and L. I. Khmel’nitzki, Uspekhi Khim., 52, 777 786, (English edition) 440 445 (1983).

9.N. Kornblum and D. C. Iffland, J. Am. Chem. Soc., 71, 2137 (1949).

10.H. Gies and E. Pfeil, Justus Liebigs Ann. Chem., 578, 11 (1952).

11.H. -J. Opgenorth and C. Ruchardt,¨ Justus Liebigs Ann. Chem., 1333 (1974).

12.J. Fitzpatrick, T. A. Meyer, M. E. O’Neill and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 927 (1984).

13.M. A. Weaver and L. Shuttleworth, Dyes and Pigments, 3, 81 (1982).

14.R. N. Butler, Chem. Rev., 75, 241 (1975).

15.G. Cirrincione, A. M. Almerico, E. Aiello and G. Dattolo, Adv. Heterocycl. Chem., 48, 65 (1990).

16.H. Reimlinger, A. van Overstraeten and H. G. Viehe, Chem. Ber., 94, 1036 (1961).

17.J. Vilarrasa, E. Malendez´ and J. Elguero, Tetrahedron Lett., 1609 (1974).

18.H. Diener and H. Zollinger, Can. J. Chem., 64, 1102 (1986).

19.M. V. Gorelik and V. I. Lomzakova, Zh. Org. Khim., 14, 1051, 981EE (1978).

20.M. V. Gorelik, S. P. Titova, V. I. Rybinov, Zh. Org. Khim., 16, 1322, 1143EE (1980).

21.R. N. Butler and F. L. Scott, J. Org. Chem., 32, 1224 (1967).

22.P. B. Shevlin, J. Am. Chem. Soc., 94, 1379 (1972).

23.E. J. Gray, M. F. G. Stevens, G. Tennant and R. J. S. Vevers, J. Chem. Soc., Perkin Trans. 1, 1496 (1976).

24.E. Kalatzis, J. Chem. Soc. (B), 273 (1967).

25.E. Kalatzis and C. Mastrokalos, J. Chem. Soc., Perkin Trans. 2, 1830, 1835 (1977).

26.M. P. Nemeryuk, A. L. Sedov, T. S. Safenova, A. Cerny and J. Krepelka, Collect. Czech. Chem. Commun., 51, 215 (1986).

27.G. Dattolo, G. Cirrincione, A. M. Almerico and E. Aiello, Heterocycles, 20, 255 (1983).

28.R. V. Hoffman, in Organic Syntheses, Coll. Vol. VII (Ed. J. P. Freeman), Wiley, New York, 1990, pp. 508 511.

29.P. Bersier, L. Valpiana and H. Zubler, Chemie-Ingenieur-Technik, 43, 1311 (1971).

30.G. M. Brooke, E. J. Forbes, R. D. Richardson, M. Stacey and J. C. Tatlow, J. Chem. Soc., 2088 (1965).

31. H. Iwamoto, T. Sonoda and H. Kobayashi, Tetrahedron Lett., 24, 4703 (1983); H. Iwamoto,

T. Sonoda and H. Kobayashi, J. Fluorine Chem., 24, 535 (1984).

32.J. Goerdeler and M. Roegler, Chem. Ber., 103, 112 (1970).

33.A. Ginsberg und J. Goerdeler, Chem. Ber., 94, 2043 (1961).

34.A. C. Alty, R. E. Banks, A. R. Thompson and B. R. Fishwick, J. Fluorine Chem., 26, 263 (1984).

35.E. Y. Belyaev, S. V. Tverdokhlebov, Y. I. Shpinell and E. B. Mel’nikov, Zh. Org. Khim., 25, 445, (English edition) 402 (1989).

36.E. B. Starkey, in Organic Syntheses, Coll. Vol. II (Ed. A. H. Blatt), Wiley, New York, 1943, pp. 225 227.

37.K. G. Rutherford and W. Redmont, in Organic Syntheses, Coll. Vol. V (Ed. H. E. Baumgarten), Wiley, New York, 1973, pp. 133 136.

38.B. Morosin and E. C. Lingafelter, Acta Crystallogr., 12, 611 (1959).

39.T. N. Polynova, N. G. Bokii and B. A. Porai-Koshits, Zh. Struct. Khim., 6, 878 (1965); Chem. Abstr., 64, 11978e (1966).

40.Y. M. Nesterova, B. A. Porai-Koshits, A. V. Upadiheva and L. A. Kazitsyna, Zh. Struct. Khim., 7, 129 (1966); Chem. Abstr., 64, 18555c (1966).

41.A. Mostad and C. Rømming, Acta Chem. Scand., 22, 1259 (1968).

42.S. Koller and H. Zollinger, Helv. Chim. Acta, 53, 78 (1970).

43.V. E. Kampar, V. R. Kokars and O. Y. Neiland, Zh. Obshch. Khim., 47, 858, (English edition) 784 (1977).

660

Heinrich Zollinger

44.V. V. Ershov, G. A. Nikiforov and C. R. H. I. de Jonge, Quinone Diazides, Elsevier, Amsterdam, 1951; (a) pp. 95 104; (b) pp. 105 106.

45.K. Y. Law, S. Kaplan and I. W. Tarnawsky, Dyes and Pigments, 17, 41 (1991).

46.E. S. Olson, J. Heterocycl. Chem., 14, 1255 (1977).

47.I. Pikulik, R. U. Weber and H. Zollinger, Helv. Chim. Acta, 64, 1777 (1981).

48.N. B. Kupletskaya and L. A. Kazitsyna, Zh. Org. Khim., 22, 1237, (English edition) 1114 (1986).

49.M. Hudlicky and H. M. Bell, J. Fluorine Chem., 4, 149 (1974).

50.A. Oku and A. Matsui, J. Org. Chem., 44, 3342 (1979).

51.R. W. Trimmer, L. R. Stover and A. C. Skjold, J. Org. Chem., 50, 3612 (1985).

52.

O. Macha´ckova´ and V. Sterba,L

Collect. Czech. Chem. Commun., 36, 3197 (1971).

 

L

L

 

53.

K. Y. Law, I. W. Tasnawskyj and P. T. Lubberts, Dyes and Pigments, 23, 243 (1993).

54.

W. Klotzer,¨ G. Dorler,¨ B. Stanovnik and M. TisLler, Heterocycles, 22, 1763 (1984).

55.

E. Bamberger, Ber. Dtsch. Chem. Ges., 30, 366 (1897).

56.

R. Huisgen and G. Horeld, Justus Liebigs Ann. Chem., 562, 137 (1949).

57.

H. Suschitzky, Angew. Chem., 79, 636; Angew. Chem., Int. Ed (Engl)., 6, 596 (1967).

58.

J. Turcan, Bull. Soc. Chim. France, 627 (1935).

59.

G. A. Olah, N. A. Overchuk and J. C. Lapierre, J. Am. Chem. Soc., 87, 5786 (1965).

60.

M. P. Doyle, W. Wierenga and M. A. Zaleta, J. Org. Chem., 37, 1597 (1972); M. P. Doyle,

 

M. A. Zaleta, J. E. DeBoer and W. Wierenga, J. Org. Chem., 38, 1663 (1973).

61.

G. B. Bachman and W. Michalowicz, J. Org. Chem., 23, 1800 (1958).

62.

H. Zimmer and G. Singh, Angew. Chem., 75, 574; Angew. Chem., Int. Ed. (Engl.), 2, 395EE

 

(1963).

 

 

63.

K. Bott, Angew. Chem., 77, 132; Angew. Chem., Int. Ed. (Engl.), 4, 148EE (1965).

64.

R. Weiss and K. -G. Wagner, Chem. Ber., 117, 1973 (1984).

65.

R. Weiss, K. -G. Wagner and M. Hertel, Chem. Ber., 117, 1965 (1984).

66.

R. Weiss, K. -G. Wagner, C. Priesner and J. Macheleid, J. Am. Chem. Soc., 107, 4491 (1985).

67.

R. A. Abramovitch, H. H. Gibson, T. Nguyen, S. Olivella and A. Sole, Tetrahedron Lett., 35,

 

2321 (1994).

 

 

68.

M. P. Doyle and W. J. Bryker, J. Org. Chem., 44, 1572 (1979).

69.

J. Tummavuori and P. Lumme Acta Chem. Scand., 22, 2003 (1968).

70.

G. Y. Markovits, S. E. Schwartz and L. Newman, Inorg. Chem., 20 445 (1981).

71.

N. S. Bayliss and D. W. Watts, Aust. J. Chem., 16, 927 (1963).

72.

J. H. Ridd, Adv. Phys. Org. Chem., 16, 1 (1978); (a) p.19.

73.

D. L. H. Williams,

Nitrosation, Cambridge University Press, Cambridge, 1988; (a) p.8;

(b)pp. 89 93.

74.F. Seel and R. Winkler, Z. Phys. Chem., 25, 217 (1960).

75.N. S. Bayliss, R. Dingle, D. W. Watts and R. J. Wilkie, Aust. J. Chem., 16, 933 (1963).

76.R. A. Cox and K. Yates, Can. J. Chem., 61, 2225 (1983).

77.H. Schmid and P. Krenmayr, Monatsh. Chem., 98, 417 (1967).

78.M. T. Nguyen and A. F. Hegarty, J. Chem. Soc., Perkin Trans. 2, 2037 (1984).

79.K. A. Jørgensen and S. O. Lawesson, J. Chem. Soc., Perkin Trans. 2, 231 (1985).

80.G. Klopman, Chemical Reactivity and Reaction Paths, Wiley, New York, 1974.

81.I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, Chichester, 1976.

82.W. F. Reynolds and R. D. Topsom, J. Org. Chem., 49, 1989 (1984).

83.S. Ehrenson, R. T. C. Brownlee and R. W. Taft, Prog. Phys. Org. Chem., 10, 1 (1973).

84.R. W. Taft and R. D. Topsom, Prog. Phys. Org. Chem., 16, 1 (1987).

85.M. Charton, Prog. Phys. Org. Chem., 13, 119 (1981).

86.E. C. R. de Fabrizio, E. Kalatzis and J. H. Ridd, J. Chem. Soc. (B), 533 (1966).

87.E. Kalatzis and J. H. Ridd, J. Chem. Soc. (B), 529 (1966).

88.J. Casado, A. Castro, E. Iglesias, M. E. Pena˜ and J. V. Tato, Can. J. Chem., 64, 133 (1986).

89.H. Zollinger, Helv. Chim. Acta, 71, 1661 (1988).

90.E. Kalatzis, J. Chem. Soc. (B), 277 (1967).

91.E. Kalatzis and P. Papadopoulos, J. Chem. Soc., Perkin Trans. 2, 248 (1981).

92.C. Bravo, A. Castro, E. Iglesias, J. Ramon´ Leis and M. E. Pena,˜ Bull. Soc. Chim. Fr., 573 (1987).

93.H. Diener, B. Gulec,¨ P. Skrabal and H. Zollinger, Helv. Chim. Acta, 72, 800 (1989).

94.H. Schmid, Z. Elektrochem., 42, 580 (1936); 43, 626 (1937).

95.L. P. Hammett, Physical Organic Chemistry, McGraw-Hill, New York, 1940 (second edition 1970); (a) p.294 (1940); (b) p.295 (1940).

13. Diazotization of amines and dediazoniation of diazonium ions

661

96.L. Abia, A. Castro, E. Iglesias, J. R. Leis and M. E. Pena,˜ J. Chem. Res. (S), 106 (1989).

97.E. D. Hughes and J. H. Ridd, J. Chem. Soc., 70, 82 (1958).

98.A. Castro, E. Iglesias, J. Ramon´ Leis and M. E. Pena,˜ Ber. Bunsenges. Phys. Chem., 90, 891 (1986).

99.IUPAC: A Guide to IUPAC Nomenclature of Organic Compounds. Recommendations 1993 (Eds.

R.Panico, W. H. Powell and J. -C. Richer), Blackwell, London, 1994, Rule R-5.3.3.4.

100.J. Hovinen, J. Fishbein, S. N. Satapathy, J. Ho and J. Fishbein, J. Am. Chem. Soc., 114, 10321 (1992).

101.J. Goerdeler and K. Deselaers, Chem. Ber., 91, 1025 (1958); A. Ginsberg and J. Goerdeler, Chem. Ber., 94, 2043 (1961).

102.R. N. Butler, T. M. Lambe, J. C. Tobin and F. L. Scott, J. Chem. Soc., Perkin Trans. 1, 1357 (1973); N. D. Stepanov, M. S. Pevzner, Y. V. Serov and T. P. Temchenko, Zh. Org. Khim., 25, 2013, (English edition) 1819 (1989).

103.IUPAC: Linear Representation of Reaction Mechanisms, (Ed. J. S. Littler), Pure Appl. Chem., 55, 3846 (1990).

104.M. Tsuda, T. Ishida, T. Nogami, S. Kurono and M. Ohashi, Chem. Lett., 2333 (1992).

105.J. I. G. Cadogan, Acc. Chem. Res., 4, 186 (1971).

106.H. Zollinger, J. Org. Chem., 55, 3846 (1990).

107.Y. Hashida, R. G. M. Landells, G. E. Lewis, I. Szele and H. Zollinger, J. Am. Chem. Soc., 100, 2816 (1978); M. D. Ravenscroft and H. Zollinger, Helv. Chim. Acta, 71, 507 (1988).

108.M. D. Ravenscroft, K. Takagi, B. Weiss and H. Zollinger, Gazz. Chim. Ital., 117, 353 (1987).

109.J. Maurer, I. Szele and H. Zollinger, Helv. Chim. Acta, 62, 1079 (1979).

110.M. L. Crossley, R. H. Kienle and C. H. Benbrook, J. Am. Chem. Soc., 62, 1400 (1940); P. Burri,

G.H. Wahl and H. Zollinger, Helv. Chim. Acta, 57, 2099 (1974).

111.T. Kuokkanen, Finn. Chem. Lett., 81 (1981); H. Maskill and K. McCrudden, Croat. Chim. Acta, 65, 567 (1992).

112.W. A. M. Castenmiller and H. M. Buck, Recl. Trav. Chim. Pays-Bas, 96, 207 (1977).

113.R. Glaser, G. S.-C. Choy and C. J. Horan, J. Org. Chem., 57, 995 (1992).

114.R. Glaser and C. J. Horan, J. Am. Chem. Soc., accepted (1996).

115.R. F. W. Bader, Chem. Rev., 91, 893 (1991) and earlier references cited there.

116.C. Galli, J. Chem. Soc., Perkin Trans. 2, 1459 (1981), 1139 (1982), 897 (1984): (a) p.1459 (1981).

117.C. Galli, Chem. Rev., 88, 765 (1988); (a) p.781.

118.L. F. Kasukhin, M. P. Ponomarchuk and A. L. Buchachenko, Chem. Phys., 3, 136 (1974).

119.O. Brede, R. Mehnert, W. Naumann and H. G. O. Becker, Ber. Bunsenges. Phys. Chem., 84, 666

(1980); P. S. Engel and D. B. Gerth, J. Am. Chem. Soc., 105, 6849 (1983).

120. T. Suehiro, T. Tashiro and R. Nakausa, Chem. Lett., 1339 (1980); T. Suehiro, S. Masuda, T. Tashiro, R. Nakausa, M. Taguchi, A. Koike and A. Rieker, Bull. Chem. Soc. Jpn., 59, 1877 (1986); T. Suehiro, S. Masuda, R. Nakausa, M. Taguchi, A. Mori, A. Koike and M. Date, Bull. Chem. Soc. Jpn., 60, 3321 (1987); T. Suehiro, T. Sato, T. Sano, A. Koike and A. Rieker, Chem. Lett., 1935 (1989).

121.T. Suehiro, Rev. Chem. Intermediates, 10, 101 (1988).

122.G.-J. Meyer, K. Rossler¨ and G. Stocklin,¨ J. Am. Chem. Soc., 101, 3121 (1979).

123.T. Kuokkanen, Finn. Chem. Lett., 16, 19 (1989).

124.J. Besse, W. Schwarz and H. Zollinger, Helv. Chim. Acta, 64, 504, 513, 529 (1981).

(a) K. Harada and K. Sugita, J. Imaging Sci. Technol., 38, 131 (1994).

125.N. Kornblum, Org. React., 2, 262 (1944).

126.S. Yasui, M. Fujii, C. Kawano, Y. Nishimura and A. Ohno, Tetrahedron Lett., 32, 5601 (1991);

S. Yasui, K. Shioji and A. Ohno, Tetrahedron Lett., 35, 2695 (1994); S. Yasui, M. Fujii,

C. Kawano, Y. Nishimura, K. Shioji and A. Ohno, J. Chem. Soc., Perkin Trans. 2, 177 (1994).

127.J. I. G. Cadogan and G. A. Molina, J. Chem. Soc., Perkin Trans. 1, 541 (1973).

128.M. P. Doyle, J. F. Dellaria, B. Siegfried and S. W. Bishop, J. Org. Chem., 42, 3494 (1977).

129.M. D. Threadgill and A. P. Gledhill, J. Chem. Soc., Trans. Perkin 1, 873 (1986).

130.T. Keumi, T. Umeda, Y. Inoue and H. Kitajima, Bull. Chem. Soc. Jpn., 62, 89 (1989).

131.D. J. Milner, Synth. Commun., 22, 73 (1992).

132. T. Fukuhara, T. Sawada and N. Yoneda, Synth. Commun., 17, 686 (1987); N. Yoneda, T. Fukuhara, T. Kikuchi and A. Suzuki, Synth. Commun., 19, 865 (1989); T. Fukuhara, S. Sasaki, N. Yoneda and A. Suzuki, Bull. Chem. Soc. Jpn., 63, 2958 (1990); T. Fukuhara, M. Sekiguchi and N. Yoneda, Chem. Lett., 1011 (1994).

662

Heinrich Zollinger

133.N. Yoneda, T. Fukuhara, K. Harada and A. Matsushita, Jpn. Kokai Tokkyo Koho, Jpn. P. 01 316 336 (1989); Chem. Abstr., 113, 223358p (1990).

134.G. A. Olah, R. D. Chgambers and G. K. Prakash, Synthetic Fluorine Chemistry, Wiley, New York, 1992, p. 178.

135.R. W. Ramette, Inorg. Chem., 25, 2481 (1986).

136.K. Dassbjerg and H. Lund, Acta Chem. Scand., 46, 157 (1992).

137.J. Z. Gougoutas and J. Johnson, J. Am. Chem. Soc., 101, 5672 (1979).

138.J. Z. Gougoutas, J. Am. Chem. Soc., 101, 5672 (1979).

139.H. Ku and J. R. Barrio, J. Org. Chem., 46, 5239 (1981).

140. J. R. Barrio,

N. Satyamurthy,

H. Ku and

M. E. Phelps, J.

Chem. Soc., Chem. Commun.,

443 (1983);

N. Satyamurthy,

J. R. Barrio,

D. G. Schmidt,

C. Kammerer, G. T. Bida and

M. E. Phelps, J. Org. Chem., 55, 4560 (1990).

141.R. M. Elofson and F. F. Gadallah, J. Org. Chem., 36, 1769 (1971).

142.J. March, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992, p.719.

143.E. R. Atkinson and D. M. Murphy, in Organic Syntheses, Coll. Vol. IV (Ed. N. Rabjohn), Wiley, New York, 1963, pp. 872 876.

144.E. R. Atkinson and H. J. Lawler, in Organic Syntheses, Coll. Vol. I, second ed. (Ed. H. Gilman), Wiley, New York, 1964, pp. 222 224.

145.T. Cohen, R. J. Lewarchik and J. Z. Torino, J. Am. Chem. Soc., 96, 7753 (1974).

146.H. Meerwein, E. Buchner and K. van Emster, J. Prakt. Chem., 152, 237 (1939).

147.A. V. Dombrovskii, Uspekhi Khim., 53, 1625, (English edition) 943 (1984).

148.M. P. Doyle, B. Siegfried, R. C. Elliott and J. F. Dellaria, J. Org. Chem., 42, 2431 (1977);

S.Oae, K. Shinhama and Y. H. Kim, Bull. Chem. Soc. Jpn., 53, 1065 (1980).

149.Y. Takahashi, T. Ito, S. Sakai and Y. Ishii, J. Chem. Soc., Chem. Commun., 1065 (1970); T. Ukai,

H.Kawazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, J. Organomet. Chem., 65, 253 (1974).

150.K. Kikukawa and T. Matsuda, Chem. Lett., 159 (1977).

151.F. Akiyama, H. Miyazaki, K. Kaneda, S. Teranishi, Y. Fujiwara, M. Abe and H. Taniguchi, J. Org. Chem., 45, 2359 (1980).

152.K. Kikukawa, K. Nagira, N. Terao, F. Wada and T. Matsuda, Bull. Chem. Soc. Jpn., 52, 5209 (1977).

153.K. Kikukawa, K. Maemura, Y. Kiseki, F. Wada and T. Matsuda, J. Org. Chem., 46, 4885 (1981).

154.K. Ikenaga, K. Kikukawa and T. Matsuda, J. Chem. Soc., Perkin Trans. 1, 1959 (1986).

155.K. Kikukawa, H. Umekawa and T. Matsuda, J. Organomet. Chem., 311, C44 (1986).

156.G. A. Reynolds and J. A. VanAllen, in Organic Syntheses, Coll. Vol. IV (Ed. N. Rabjohn), Wiley, New York, 1963, pp. 15 18; G. A. Ropp and E. C. Coynev, in Organic Syntheses, Coll. Vol. IV (Ed. N. Rabjohn), Wiley, New York, 1963, pp. 727 729.

157.A. Citterio, in Organic Syntheses, Coll. Vol. VII (Ed. J. P. Freeman), Wiley, New York, 1990, pp. 105 108.

158.R. Leardini, D. Nanni, A. Tundo and G. Zanardi, Synthesis, 335 (1988).

159.P. S. Engel, in Houben-Weyl. Methoden der organischen Chemie, 4th Ed., Vol. E 16a, Part II (Ed. D. Klamann), Georg Thieme, Stuttgart, 1990, pp. 1052 1136; (a) Table 107.

160.G. F. Meijs and A. L. J. Beckwith, J. Am. Chem. Soc., 108, 5890 (1986); A. N. Abeywickerema and A. L. J. Beckwith, J. Am. Chem. Soc., 108, 8227 (1986) and J. Org. Chem., 52, 2568 (1987);

A.L. J. Beckwith and G. F. Meijs, J. Org. Chem., 52, 1922 (1987).

161. A. L. J. Beckwith and C. H. Schiesser, Tetrahedron, 41, 3925 (1985); D. C. Spellmeyer and

K.N. Houk, J. Org. Chem., 52, 959 (1987).

162.A. L. J. Beckwith and J. Zimmermann (1991), J. Org. Chem., 56, 5791 (1991); A. L. J. Beckwith and S. M. Palacios, J. Phys. Org. Chem., 4, 404 (1991); A. L. J. Beckwith and S. Gerba, Aust.

J.Chem., 45, 289 (1992).

163.A. L. J. Beckwith, R. A. Jackson and R. W. Longmore, Aust. J. Chem., 45, 857 (1992).

164.T. Cohen, A. G. Dietz and J. R. Miser, J. Org. Chem., 42, 2053 (1977).

165.N. Satyamurthy, J. R. Barrio, G. T. Bida and M. E. Phelps, Tetrahedron Lett., 31, 4409 (1990).

166.N. Yoneda, T. Fukuhara, T. Mizokami and A. Suzuki, Chem. Lett., 459 (1991).

167.Y. Yildirir and G. Okay, Org. Prep. Proced. Int., 23, 198 (1991).

168.M. P. Doyle, B. Siegfried and J. F. Dellaria, J. Org. Chem., 42, 2426 (1977).

169.G. A. Olah, A. -H. Wu, A. Bagno and G. K. S. Prakash, Synlett., 596 (1990).

170.K. Nagira, K. Kikukawa, F. Wada and T. Matsuda, J. Org. Chem., 45, 2365 (1980).

171.H. Meerwein, G. Dittmar, G. Kaufmann and R. Raue, Chem. Ber., 90, 853 (1957).

13. Diazotization of amines and dediazoniation of diazonium ions

663

172.K. Kikukawa, T. Ideomoto, A. Katayama, K. Kono, F. Wade and T. Matsuda, J. Chem. Soc., Perkin Trans. 1, 1511 (1987).

173.A. N. Nesmeyanov, Adv. Organomet. Chem., 10, 1 (1972); O. A. Reutov and D. A. Ptitsyna,

Organomet. React., 4, 73 (1972); R. C. Larock, Organomercury Compounds in Organic Synthesis, Springer, Berlin, 1985; J. L. Wardell, in Inorganic Reactions and Methods, Vol. 11 (Ed.

J. J. Zuckerman), VCH Publ., Weinheim, 1988.

174.O. Sus,¨ Justus Liebigs Ann. Chem., 556, 65, 85 (1944).

175.M. Barra, T. A. Fisher, G. J. Cernigliaro, R. Sinta and J. C. Scaiano, J. Am. Chem. Soc., 114, 2630 (1992); J. Andraos, Y. Chiang, C. -G. Huang, A. J. Kresge and J. C. Scaiano, J. Am. Chem. Soc., 115, 10605 (1993); J. Andraos, A. J. Kresge and V. V. Popik, J. Am. Chem. Soc., 116, 961 (1994).

176.T. T. Tidwell, Ketenes, Wiley, New York 1995.

Соседние файлы в папке Patai S., Rappoport Z. 1996 The chemistry of functional groups. The chemistry of amino, nitroso, nitro and related groups