Скачиваний:
28
Добавлен:
15.08.2013
Размер:
997.62 Кб
Скачать

23. The thiocarbonyl group

1465

Abboud, Taft and collaborators546 to define the ˛H2 and ˇ2H scales of HB acidities and basicities.

Quite generally, and for media ranging from the gas phase to CCl4, it is known547 that for thousands of (AH, B) systems, the bilinear equation 161b yields log10 Kc values with a satisfactory degree of precision:

log10 Kc D a C b Ð ˛2H AH Ð ˇ2H B

161b

wherein a and b are constants.

Experimental data on the HB basicity of the compounds most relevant to this chapter are scarce. Abboud and colleagues548 summarized the available data in 1988. They also determined new constants for the HB associations between 3,4-dinitrophenol and some thiocarbonyl compounds. Recently, Laurence and coworkers have published new results, particularly for thioamides and thioureas549. Some representative data are given in Table 19.

This table shows that: (i) CDS compounds are significantly weaker HB bases than their CDO homologs, a situation similar to that prevailing for S(sp3) and O(sp3) bases548. (ii) The dependence of ˇ2H on substitution needs more data to be fully understood. Thus, it seems that for weakly basic compounds the sensitivity of CDO compounds to substituent effects is more important than that of CDS while for the most basic compounds, sensitivities are nearly the same. (iii) 2,4-bisdimethylamino-4-methyl-1-thia-3-azabutadiene (154) is the strongest thiocarbonyl HB base ever reported.

In cases of intermolecular HB the situation is convoluted. On the basis of the available ˛H2 and ˇ2H parameters we know that, for homologous series of monofunctional compounds, ˛H2 OH > ˛H2 SH and ˇ2H CDS > ˇ2H CDO . The orders of magni-

tude are such, however, that the product ˛H2 OH Ð ˇ2H CDS is larger than the product ˛H2 SH Ð ˇ2H CDO . On the basis of equation 161b this fact, alone, would tend to shift the equilibrium towards the enol form of thioxoketones and thioxoaldehydes Of course, other factors come into play (see Section II).

4. Lithium cation affinities

A wealth of thermodynamic data are available for reaction 162 in the gas phase.

XC DO Y g C LiC g ! [XC DO . . . Li Y]C g

162

TABLE 19. Hydrogen-bonding basicity parameters for selected

 

thiocarbonyl and carbonyl compounds

 

 

 

 

 

 

 

 

Compound

ˇ2H (CDS)

ˇ2H (CDO)

 

 

Thiocamphor

0.31a

0.48b

 

Diethylketone

 

 

Cyclohexanone

 

0.52b

 

HC(DX)NMe2

a

b

 

0.46a

0.66b

 

CH3C(DX)NMe2

0.52a

0.73

 

 

MeOC(DX)NMe2

0.41a

 

 

 

MeSC(DX)NMe2

0.38a

 

 

 

Me2NCHDN(CDX)NMe2

0.68a

b

 

Me2NC(DX)NMe2

0.53

0.74

 

 

aFrom Reference 549.

bFrom Reference 546.

1466 M. T. Molina, M. Ya´nez,˜ O. Mo,´ R. Notario and J.-L. M. Abboud

Such information is not yet available for CDS compounds, although Alcami and coworkers116 and Speers and Laidig550 have reported results of theoretical studies, which include a number of G2(MP2) calculations on both families of compounds116. They show that, while the binding of LiC(g) involves essentially electrostatic interactions in both cases, the structures and energetics of the LiC adducts of CDO and of CDS are profoundly different. At the MP2/ 6-31CG(d, p) level, for example, LiC is found along the C2 symmetry axis of H2CO and close to the oxygen atom. In the case of thioformaldehyde, LiC is located near the sulfur atom, but now the LiSC angle amounts to 107.5°. This indicates that in the first case the ion is located between the lone pairs of the oxygen, while in the second, it is aligned with one of the sulfur lone pairs. A detailed discussion of various other carbonyl and thiocarbonyl compounds is given116. From the thermodynamic point of view, the lithium cation affinities of thiocarbonyls are appreciably smaller than those of carbonyls, at variance with the behavior towards the proton.

J. Synthesis and Reactivity in a Mass Spectrometer

Over these last few years, a powerful technique, neutralization reionization mass spectrometry (NRMS), has been developed that allows the generation and study of highly reactive species20 22,551. This technique has obviously not reached the ‘preparative’ scale of FVP but, nevertheless, it has led to some important discoveries. Typically, instruments of this sort are built around a multisector mass spectrometer552. Ions are generated by ionization of neutral species, ion dissociation or ion molecule reactions553. These primary ions can be characterized by appropriate techniques such as collision-induced dissociation (CID)554. Then, they are selected and separated under the influence of electric and magnetic fields. The selected ions are neutralized (e.g. with metal vapor or Xe) in the first collision chamber and the remaining ions are ejected. The fast neutral beam thus obtained undergoes collisions with a target neutral gas, such as O2, in the second collision chamber, this leading to a reionization process. The ions thus generated are mass-analyzed and identified.

An example is provided by thioxoethylenone, ODCDCDS. Its radical cation (155) can be generated555 by electron impact (70 eV) on its precursor (156) (equation 163).

O

S

 

O

C C

C

C

 

 

[ O C C S ]+.

 

 

 

 

70 eV

 

 

 

 

 

 

 

 

 

 

 

 

C

C

C C

 

 

 

 

 

 

(163)

 

 

 

 

 

 

 

O

S

 

O

 

(156)

 

(155)

 

 

In the first experiment, 155 thus generated was decomposed by collision. In the second one, the ion upon neutralization led to ODCDCDS which, in turn, was reionized and collision-decomposed. The MS obtained in both cases were essentially identical, showing the existence and stability (within the time scale of the experiment) of both ODCDCDS and 155.

In the field of CDS chemistry this method has proven to be quite useful to generate and identify species such as: CDCDS556, SDCDCDS176 and SDCDCDCDCDS556.

Later on, Schwarz and coworkers557 have described the generation of both evenand odd-numbered polycarbon disulfides S(Cn)S with n D 2 6.

Flammang, Wong, Wentrup and collaboration have reported the preparation and characterization of (methylimino)ethenethione, CH3NDCDCDS and iminoethenethione, HNDCDCDS558, and of their oxygen homologues559. These compounds are stable on the microsecond time scale. They were also studied theoretically, at the G2(MP2) level.

23. The thiocarbonyl group

1467

V. COORDINATION CHEMISTRY

The versatility of sulfur as the heteroatom in hetero-organic ligands has been the source of the diversity of organosulfur ligands known today30. Since Schaumann’s chapter1, there have been several studies about coordination complexes involving thioketenes and

thioaldehydes as ligands. For example, complexes of thioketenes with Mo560, Os561,562, W563 565, Co566, Fe566,567, Ru568, Ti569 and of thioaldehydes with Mo560, Re570, Ti571,572, W502,573,574 and Ta575 have been reported.

To obtain thioaldehyde complexes, Muraoka and coworkers573 have synthesized a new reagent [PPh4][W(CO)5SH] according reaction 164:

i

ii

 

[NEt4][W(CO)5] ! [W(CO)5 C4H8O ] ! [PPh4][W(CO)5SH]

164

Reagents and conditions: (i) AgNO3 H2O, THF, room temp., 30 s (ca 100%); (ii) [PPh4]SH EtOH, THF,20 °C, 30 s 95%.

Aromatic thioaldehyde pentacarbonyltungsten(0) complexes were synthesized by treatment of N-phenyl or N-cyclohexyl imines of aryl aldehydes with [PPh4][W(CO)5SH] in CH2Cl2 or C6H6 in the presence of BF3 Ð OEt2 and MeCO2H (reaction 165):

CH NR

CH S W(CO)

R1

R1

 

(165)

R2

R2

R3

R3

Reagents and conditions: [PPh4][W(CO)5SH], BF3 Ð OEt2 MeCO2H, C6H6 or CH2Cl2,room temp.

Similar pentacarbonyltungsten(0) complexes of heteroaromatic thioaldehydes, such as 2-thioformylfuran 2-thioformylthiophene, thioarylenals or thioaryldienals, were also synthesized573.

Heterocyclic thiones have been extensively studied because of their facility to yield coordination complexes. All the ligands contain thione and occasionally thiol (mercapto) groups directly attached to the carbon atoms of heterocyclic molecules. They have been previously reviewed by Raper in 1985576, and very recently the same author has reviewed28 the copper complexes of heterocyclic thioamides and related ligands.

The combination of an exocyclic thione group and a heterocyclic molecule, which may contain nitrogen, oxygen, sulfur or a combination thereof, generates a group of molecules with considerable coordination potential.

An important factor in realizing such potential is that of prototropic tautomerism and, in particular, which tautomer is present in solution immediately prior to the formation of the metal ligand bond576. A common feature of all nitrogen-containing heterocyclic thiones is thione (157c) thiol (157b) tautomerism.

As already discussed above, the thione thiol equilibrium is dependent on environmental factors with the thiol form favored in the gas phase and nonpolar solvents, and the thione form favored in the solid state and polar solvents.

1468 M. T. Molina, M. Ya´nez,˜ O. Mo,´ R. Notario and J.-L. M. Abboud

 

C

SH

C

SH

 

N

+

 

N

 

 

H

 

 

 

 

 

 

(a)

 

 

(b)

 

C

 

S

C

S

C S-

NH

 

 

N

N

 

 

 

 

 

 

 

 

(c)

 

 

(d)

 

 

 

(157)

 

 

(158)

Deprotonation of heterocyclic ‘thiones’ (157c) produces the corresponding ‘thionate’ ion (157d) in which an electron pair on the heterocyclic trigonal nitrogen and three electron pairs on the thionate sulfur generate considerable coordination potential (158).

Among the heterocyclic thiones, we present in Tables 20 25 the metal complexes of some of the thiocarbonyl ligands most widely used, which are represented in Figure 3. In these tables, data are given from 1988. In the case of copper, only complexes reported since Raper’s review28 are given.

 

 

S

 

 

 

 

 

C

 

 

H

 

 

 

 

NH

N

 

C

 

 

C

C S

N

N

N

N

S

S

H

 

H

 

 

H

(a)

 

(b)

(c)

 

(d)

H

 

H

H

 

N

 

 

 

N

N

 

 

C S

C S

C

S

N

 

N

S

 

H

 

H

 

 

(e)

 

(f)

(g)

 

H

H

H

 

H

N

N

N

 

N

 

 

N

 

N

C

S

C S

C S

C S

S

S

N

 

N

 

N

 

 

H

 

H

(h)

(i)

(j)

 

(k)

FIGURE 3. Thiocarbonyl ligands involved in Tables 20 25: (a) pyridine-2-thione, (b) pyridine- 4-thione, (c) pyrimidine-2-thione, (d) 1,3-imidazoline-2-thione, (e) benz-1,3-imidazoline-2-thione,

(f) 1,3-imidazolidine-2-thione, (g) 1,3-thiazoline-2-thione, (h) benz-1,3-thiazoline-2-thione, (i) 1,3- thiazolidine-2-thione, (j) 1,2,4-triazoline-3(5)-thione, (k) 1,2,3,4-tetrazoline-5-thione

23. The thiocarbonyl group

 

1469

TABLE 20. Metal complexes of pyridine-thiones

 

 

 

 

 

 

 

 

 

 

 

 

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

 

Pyridine-2-thione

Au(I)

L

1 : 2

577

 

 

 

1 : 1

578

 

 

LH

1 : 1

579, 580

 

 

 

1 : 2

579

 

Ag(I)

LH

1 : 1

581

 

Cu(I)

LH

1 : 1

582

 

584

 

 

 

 

 

1 : 2

585

 

Os(II)

L

1 : 2

586

 

Zn(II)

LH

1 : 2

587

 

Ru(II)

L

1 : 2

588, 589

 

 

LH

1 : 2

588

 

Ni(II)

L

1 : 1

590

 

 

 

1 : 2

591

 

Fe(II)

LH

1 : 2

592

 

Mn(II)

LH

1 : 4

593

 

Cd(II)

LH

1 : 2

587

 

W(II)

LH

1 : 1

594

 

 

L

1 : 2

594

 

Mo(II)

LH

1 : 1

594

 

 

L

1 : 2

594

 

Pd(II)

L

1 : 1; 3 : 2

595

 

Fe(III)

LH

1 : 1; 1 : 3

596

 

Co(III)

L

1 : 3

597

 

Re

L

1 : 1

598

Pyridine-4-thione

Au(I)

LH

1 : 1

580

 

Ag(I)

LH

1 : 1

581

 

Ni(II)

L

1 : 1

590

1-Hydroxypyridine-2-thione

Cu(II)

L

1 : 1

599

 

 

 

1 : 2

600

 

Ru(II)

L

1 : 2

589

 

Mn(II)

L

1 : 2

600

 

Co(II)

L

1 : 2

600

 

Ni(II)

L

1 : 2

600

 

Zn(II)

L

1 : 2

600

 

VO2C

L

1 : 2

600

 

Mn(III)

L

1 : 3

601

 

Cr(III)

L

1 : 3

600

 

Fe(III)

L

1 : 3

600

6-N, N-Dimethylcarbamoyl-1-

Zn(II)

L

1 : 2

602

hydroxypyridine-2-thione

 

 

 

 

 

 

6-N, N-Diethylcarbamoyl-1-

Zn(II)

L

1 : 2

602

hydroxypyridine-2-thione

 

 

 

 

 

 

3-Hydroxy-6-methyl-pyridine-2-thione

Ni(II)

LH

1 : 2

603

 

Cu(II)

LH

1 : 2

603

6-Methylpyridine-2-thione

Ru(II)

LH

1 : 2

588

 

 

L

1 : 2

588

 

Pd(II)

L

1 : 1

595

 

Re

L

1 : 1

598

(continued overleaf)

1470 M. T. Molina, M. Ya´nez,˜ O. Mo,´ R. Notario and J.-L. M. Abboud

TABLE 20. (continued)

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

3-Trimethylsilylpyridine-2-thione

Cu(I)

L

1 : 1

604

 

Ni(II)

L

1 : 2

604

 

Zn(II)

L

1 : 2

604

 

Cd(II)

L

1 : 2

604

 

 

LH

1 : 1

605

6-Substituted-4-aryl-3-cyanopyridine-

Ni(II)

L

1 : 2

606

 

608

 

2-thiones

Zn(II)

L

1 : 2

606

 

608

 

 

Co(II)

L

1 : 2

606, 608

 

Cu(II)

L

1 : 2

606, 608

TABLE 21. Metal complexes of pyrimidine-thiones

 

 

 

 

 

 

 

 

 

 

 

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

Pyrimidine-2-thione

Au(I)

L

1

: 2

577

 

 

 

1

: 1

578

 

 

LH

1 : 1; 1 : 2

579

 

Ag(I)

LH

1

: 1

581

 

Cu(I)

LH

1

: 1

582,609

 

Zn(II)

L

1

: 2

610

 

Cd(II)

L

1

: 2

610

 

Ni(II)

L

1

: 1

590

 

 

 

1

: 2

611

 

Pd(II)

LH

1 : 1; 1 : 2

612

 

 

L

1 : 1; 1 : 2

612

 

Pt(III)

L

2

: 5

613

 

Sn(IV)

L

1

: 2

614

 

 

LH

1

: 2

614

4,6-Dimethylpyrimidine-2-thione

Cu(I)

L

1

: 1

615, 616

 

Cd(II)

L

1

: 2

617

 

Ni(II)

L

1

: 2

617

 

Zn(II)

LH

1

: 2

618

 

Re(III)

L

1

: 1

619

 

Ru

LH

3

: 2

620

 

OS

LH

3

: 2

620,621

 

Re(V)

L

1

: 1

619

1-Phenyl-4,6-dimethylpyrimidine-

Ni(II)

LH

1 : 1; 1

: 2; 1 : 3

622

2-thione

Co(II)

LH

1 : 1; 1

: 2; 2 : 3

623

4-Hydroxy-6-methylpyrimidine-2-thione

Cu(I)

L

1

: 1

624

4,6-Diaminopyrimidine-2-thione

Co(III)

L

1 : 1; 1 : 2

625

2,4-Diaminopyrimidine-6-thione

Co(III)

L

1 : 1; 1 : 2

625

 

23. The thiocarbonyl group

 

 

1471

TABLE 22. Metal complexes of imidazoline-thiones

 

 

 

 

 

 

 

 

 

 

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

1,3-Imidazoline-2-thione

Cu(I)

LH

1 : 1

584, 609

 

Sn(IV)

LH

1 : 2

626, 627

 

Fe(II)

LH

1 : 2

628

 

 

Methylimidazoline-2-thione

Cu(I)

LH

1 : 1

582

 

 

 

Ag(I)

LH

1 : 1

581

 

 

 

Fe(II)

LH

1 : 2

628

 

 

 

Ni(II)

L

1 : 1

590

 

 

 

 

LH

1 : 4

629

 

 

 

Pb(II)

LH

1 : 3

630

 

 

 

Sn(IV)

LH

1 : 1

631, 632

 

 

 

1 : 4

633

 

 

1,3-Dimethylimidazoline-2-thione

Pb(II)

LH

1 : 2

634

 

 

 

Cd(II)

LH

1 : 2

634

 

 

4,5-Diphenylimidazoline-2-thione

Ag(I)

LH

1 : 1

635

 

 

 

 

L

1 : 1

635

 

 

Benz-1,3-imidazoline-2-thione

Cu(I)

LH

1 : 1

582

 

584, 609

 

 

Cu(II)

LH

1 : 1

636

 

 

 

Au(I)

L

1 : 2

577

 

 

 

Ag(I)

LH

1 : 1

581

 

 

 

Ni(II)

L

1 : 1

590

 

 

5-Methybenz-1,3-imidazoline-2-

Cu(I)

LH

1 : 1

584

 

 

thione

 

 

 

 

 

 

5-Nitrobenz-1,3-imidazoline-2-

Cu(I)

LH

1 : 1

584

 

 

thione

 

 

 

 

 

 

1,3-Imidazolidine-2-thione

Ag(I)

LH

1 : 1

637, 638

 

Au(I)

LH

1 : 1

637, 639, 640

 

Cu(II)

LH

1 : 1

636

 

 

 

Pd(II)

LH

1 : 2

641

 

 

 

Co(II)

LH

1 : 2

642

 

 

 

Ni(II)

LH

1 : 2

642

 

 

 

Zn(II)

LH

1 : 2

642

 

 

 

Hg(II)

LH

1 : 2

643

 

 

 

Bi(III)

LH

1 : 4

644

 

 

 

Pt(IV)

LH

1 : 2

642

 

 

 

VO2C

LH

1 : 2

645

 

 

1-Methylimidazolidine-2-thione

Pd(II)

LH

1 : 1

641

 

 

 

Te(II)

LH

1 : 3

646

 

 

 

Hg(II)

LH

1 : 2

643

 

 

1-Ethylimidazolidine-2-thione

Cu(I)

LH

1 : 2

647

 

 

 

Pd(II)

LH

1 : 1

641

 

 

 

Hg(II)

LH

1 : 2

643

 

 

1-Propylimidazolidine-2-thione

Cu(I)

LH

1 : 2

647, 648

 

Pd(II)

LH

1 : 1

641

 

 

 

Hg(II)

LH

1 : 2

643

 

 

(continued overleaf)

1472 M. T. Molina, M. Ya´nez,˜ O. Mo,´ R. Notario and J.-L. M. Abboud

TABLE 22. (continued)

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

1-Isopropyl imidazolidine-2-thione

Cu(I)

LH

1 : 2

647

 

Hg(II)

LH

1 : 2

643

 

Au(I)

LH

1 : 1

637

 

Ag(I)

LH

1 : 1

637

1,3-Dimethyl imidazolidine-

Hg(II)

LH

1 : 2

643

2-thione

VO2C

LH

1 : 2

645

1,3-Diethyl imidazolidine-2-thione

Hg(II)

LH

1 : 2

643

1,3-Di-isopropyl imidazolidine-2-

Hg(II)

LH

1 : 2

643

thione

 

 

 

 

 

 

 

 

 

 

 

TABLE 23. Metal complexes of thiazoline-thiones

 

 

 

 

 

 

 

 

 

 

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

 

 

 

1,3-Thiazoline-2-thione

Cu(I)

LH

1 : 1

609

 

 

 

Ni(II)

L

1 : 2

649, 650

 

Pd(II)

LH

1 : 4

651, 652

 

 

L

1 : 2

652

 

 

 

 

1 : 2

653

 

 

 

Pt(II)

LH

1 : 2; 1 : 4

652

 

 

 

 

L

1 : 2

653

 

 

Benz-1,3-thiazoline-2-thione

Cu(I)

LH

1 : 1

584, 609

 

Au(I)

LH

1 : 1; 1 : 2

579

 

 

 

Ag(I)

LH

1 : 1

581

 

 

 

Zn(II)

L

1 : 2

654, 655

 

Cd(II)

L

1 : 2

654, 655

 

Ni(II)

L

1 : 1

590

 

 

 

 

 

1 : 2

649, 655

 

 

 

1 : 3

656

 

 

 

Pd(II)

LH

1 : 2; 1 : 4

652

 

 

 

 

L

1 : 2

653

 

 

 

Pt(II)

LH

1 : 2; 1 : 4

652

 

 

 

 

L

1 : 2

653

 

 

 

Sb(III)

L

1 : 1

657

 

 

1,3-Thiazolidine-2-thione

Cu(I)

LH

1 : 2

647

 

 

 

 

 

1 : 1

582

 

584, 658

 

 

 

 

 

Au(I)

LH

1 : 1; 1 : 2

579, 659

 

Ag(I)

LH

1 : 1

581

 

 

 

Zn(II)

LH

1 : 2

660

 

 

 

Ni(II)

LH

1 : 1

661

 

 

 

 

L

1 : 1

590

 

 

 

 

 

1 : 2

649, 662

 

Co(II)

LH

1 : 2

660

 

 

 

Pd(II)

LH

1 : 2; 1 : 4

652

 

 

 

 

L

1 : 2

653

 

 

 

Pt(II)

LH

1 : 2; 1 : 4

652

 

 

 

 

L

1 : 2

653

 

 

 

Rh(II)

L

1 : 1; 1 : 2

663

 

 

 

23. The thiocarbonyl group

 

 

1473

TABLE 24. Metal complexes of triazoline-thiones

 

 

 

 

 

 

 

 

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

 

1,2,4-Triazoline-3(5)-thione

Pd(0)

LH

1

: 1

664

 

Pt(0)

LH

1

: 1

664

 

Co(II)

L

1

: 1

665

 

Fe(II)

L

1

: 1

665

 

Fe(III)

L

1 : 1; 1

: 2; 1 : 3

666

 

Zr(IV)

LH

1

: 2

667

 

 

L

1

: 4

667

1-Phenyltriazoline-3-thione

Fe(III)

L

1 : 1; 1

: 2; 1 : 3

666

5-Phenyltriazoline-3-thione

Fe(III)

L

1 : 1; 1

: 2; 1 : 3

666

5-Methyltriazoline-3-thione

Fe(III)

L

1 : 1; 1

: 2; 1 : 3

666

3-(4-Pyridyl)-4-phenyltriazoline-

Pd(0)

LH

1

: 1

668

5-thione

Pt(0)

LH

1 : 1; 1 : 2

668

 

Rh(I)

L

1

: 1

668

 

Ag(I)

LH

1

: 1

669

 

Co(II)

LH

1

: 2

669

 

Cu(II)

LH

1

: 1

669

 

Pd(II)

LH

1

: 1

669

 

Hg(II)

LH; L

1

: 1

669

 

Zr(IV)

LH

1 : 1; 1

: 2; 1 : 4

667

 

ZrO2C

LH

1 : 1; 1 : 4

667

4-Amino-3-hydrazinotriazoline-

Pd(0)

LH

1

: 1

670

5-thione

Pt(0)

LH

1

: 3

670

 

Rh(I)

L

1

: 1

670

 

Co(II)

L

1

: 2

670

 

Ni(II)

L

1

: 2

670

 

Zr(IV)

LH

1 : 2; 1 : 4

670

 

ZrO2C

L

1 : 30

670

 

LH

1 : 3; 1 : 4

670

4-Amino-1,4-dihydro-3-methyl-

Cu(II)

LH

1 : 1; 2 : 1

671

triazoline-5-thione

 

 

 

 

 

2,6-Dimethyl-5-oxotriazoline-3-

Ni(II)

L

1

: 1

590

thione

 

 

 

 

 

4-Amino-triazoline-5-thione

Ni(II)

LH

1 : 1; 1

: 2; 1 : 3

672

 

Co(II)

LH

1 : 1; 1

: 2; 1 : 3

672

4-Amino-3-methyltriazoline-

Ni(II)

LH

1 : 1; 1

: 2; 1 : 3

672

5-thione

Co(II)

LH

1 : 1; 1

: 2; 1 : 3

672

 

Hg(II)

L

1

: 1

673

 

Zr(IV)

LH

1 : 1; 1 : 2

667

 

ZrO2C

LH

1 : 3; 1 : 4

667

 

Hf(IV)

L

1 : 1; 1 : 3

674

4-Amino-3-ethyltriazoline-

Ni(II)

LH

1 : 1; 1

: 2; 1 : 3

672

5-thione

Co(II)

LH

1 : 1; 1

: 2; 1 : 3

672

 

Hf(IV)

L

1 : 1; 1 : 3

674

4-Amino-3-propyltriazoline-5-

Hf(IV)

L

1 : 1; 1 : 3

674

thione

 

 

 

 

 

 

 

 

 

 

 

1474 M. T. Molina, M. Ya´nez,˜ O. Mo,´ R. Notario and J.-L. M. Abboud

TABLE 25. Metal complexes of tetrazoline-thiones

Ligand(LH)

Metal

Ligand type

Stoichiometry

References

 

 

 

metal : ligand

 

 

 

 

 

 

1-Phenyl-1,2,3,4-tetrazoline-5-thione

Cu(I)

LH

1 : 1

675

 

 

L

1 : 1

676

 

Sb(III)

LH

1 : 1

677

 

Bi(III)

LH

1 : 1

677

 

Ir(III)

LH

1 : 2

678

 

Hf(IV)

L

1 : 1; 1 : 3

674

 

Sn(IV)

L

1 : 1

679

 

ZrO2C

LH

1 : 4

680

 

Zr(IV)

LH

1 : 1

680

 

VO2C

LH

1 : 1

680

 

VO2C

LH

1 : 2

680

 

MoO22C

LH

1 : 2

680

 

WO22C

LH

1 : 2

680

 

Nb(V)

L

1 : 1; 1 : 2

680

 

Ta(V)

L

1 : 5

680

1-p-Tolyltetrazoline-5-thione

Sb(III)

LH

1 : 1

677

 

Bi(III)

LH

1 : 1

677

 

VO2C

LH

1 : 2

680

1-m-Tolyltetrazoline-5-thione

Sb(III)

LH

1 : 1

677

 

Bi(III)

LH

1 : 1

677

 

Ir(III)

LH

1 : 1; 1 : 2

678

 

Nb(V)

LH

1 : 4

680

 

Ta(V)

LH

1 : 5

680

1-o-Tolyltetrazoline-5-thione

Ir(III)

LH

1 : 2

678

 

Hf(IV)

L

1 : 1; 1 : 3

674

1-p-Chlorophenyl tetrazoline-

Sb(III)

LH

1 : 1

677

5-thione

Bi(III)

LH

1 : 1

677

 

MoO22C

LH

1 : 2

680

 

Hf(IV)

L

1 : 1; 1 : 3

674

1-p-Methoxyphenyl tetrazoline-

Hf(IV)

L

1 : 1; 1 : 3

674

5-thione

 

 

 

 

 

 

 

 

 

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups