Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Rauk Orbital Interaction Theory of Organic Chemistry

.pdf
Скачиваний:
62
Добавлен:
15.08.2013
Размер:
5.9 Mб
Скачать

EXERCISES 309

…a†

…b†

…c†

Figure B.5. (a) Interaction of two molecules in their ground state. (b) three-electron and oneelectron bonding in an exciplex. (c) Bonding in an excimer.

sensitizer, a twisted binaphthyl (Kim, J.-I.; Schuster, G. B., J. Am. Chem. Soc., 1992, 114, 9309±9317).]

Answer. The interaction between two ground-state molecules in close approach is shown schematically in Figure B.5a. The energy interaction is dominated by the four-electron, two-orbital case, which is repulsive. The interaction of the LUMOs, which may be large, has no consequence to the energy, unless one of the molecules is photoexcited. In this case, shown in Figure B.5b, the LUMO±LUMO and the HOMO±HOMO interactions become attractive. The overall energy gain depends on the energy separations and the extent of orbital overlap in the two interactions. A perfect match in nodal characteristics and energies is achieved when the two molecules are identical (Figure B.5c.). Therefore an excimer would be expected to be more stable in general than an exciplex.

19.Use orbital interaction theory to develop the p orbitals of the 2-oxaallyl system, R2CÐOÐCR2, also known as a carbonyl ylide. Show why 2-oxaallyl readily reacts with alkenes and alkyne in a 4 + 2 cycloaddition reaction (an example may be found in El-Saidi, M.; Kassam, K.; Pole, D. L.; Tadey, T.; Warkentin, J., J. Am. Chem. Soc., 1992, 114, 8751±8752).

20.The photochemistry of previtamin D3 has been intensively studied (for leading references, see Dauben, W. G.; Disanayaka, B.; Funho¨, D. J. H.; Kohler, B. E.; Schilke, D. E.; Zhou, B., J. Am. Chem. Soc., 1991, 113, 8367, and Enas, J. D.; Shen, G.-Y.; Okamura, W. H., J. Am. Chem. Soc., 1991, 113, 3873). The thermal and photoreactions are summarized in Figure B.6. Discuss the various conversions using the descriptive terminology of pericyclic reactions.

21.Cyclobutadiene has been shown to have a rectangular geometry by competitive trapping of the two valence tautomeric 1,2-dideuteriocyclobutadienes using methyl 3-cyanoacrylate in a Diels±Alder reaction. [(a) Whitman, D. W.; Carpenter, B. K., J. Am. Chem. Soc., 1982, 104, 6473±6474. (b) Whitman, D. W.; Carpenter, B. K.,

J. Am. Chem. Soc., 1980, 102, 4272±4274.]

310 EXERCISES

Figure B.6. Photoreactions of previtamin D3.

Show the products expected from the Diels±Alder reactions. Use orbital interaction theory to develop a bonding scheme for rectangular cyclobutadiene and explain why rectangular cyclobutadiene may be exceptionally reactive as a diene in Diels±Alder reactions.

22.The operation of the anomeric e¨ect and the stabilization of carbocations are beautifully illustrated in a conformational study of 2-oxanol (2-oxacyclohexanol) (Smith, B. J., J. Am. Chem. Soc., 1997, 119, 2699±2706). 2-Oxanol prefers the OH axial form by 12 kJ/mol and, upon protonation of the OH group, spontaneously loses water to form the oxonium ion. Use principles of orbital interaction theory to explain:

EXERCISES 311

(a)The stabilization of the carbocation center by the oxygen

(b)The preference for the OH axial form (the anomeric e¨ect)

(c)Why it is plausible that loss of water would be easy from the protonated form

23.Vinylboronic acids have found use in a multicomponent one-step synthesis of a-

amino acids (see question 24). The HOMO and LUMO of the parent compound, CH2 ÐCHB(OH)2, from an SHMO calculation are

eHOMO ˆ a ÿ 1:153jbj: fHOMO ˆ 0:62w1 ‡ 0:72w2 ‡ 0:28w3 ÿ 0:10w4 ÿ 0:10w5 eLUMO ˆ a ‡ 0:343jbj: fLUMO ˆ ÿ0:62w1 ‡ 0:21w2 ‡ 0:74w3 ÿ 0:11w4 ÿ 0:11w5

(a)Draw the HOMO and LUMO.

(b)Would you expect vinylboronic acid to be more of less reactive toward electrophilic attack than ethylene? Where would be the site of attack? Explain.

(c)Would you expect vinylboronic acid to be more of less reactive toward nucleophilic attack than ethylene? Where would be the site of attack? Explain.

(d)De®ne a, b, and w1.

24.Petasis and Zavialov have developed the following new synthesis of a-amino acids 4 (Petasis, N. A.; Zavialov, I. A., J. Am. Chem. Soc., 1997, 119, 445±446):

312 EXERCISES

The reaction is initiated by addition of the amine 2 to the a keto acid 3, catalyzed by the vinyl boronic acid derivative 1. Use orbital interaction theoretical arguments to explain the following features of this synthesis:

(a)The amine attacks the carbonyl of the keto group of 3 rather than the carbonyl of the acid group.

(b)The nucleophilic attack on carbonyl may be catalyzed by the vinylboronic acid 1. How?

(c)The amine attacks the a keto acid 3 rather than the vinylboronic acid 1. Why? (By SHMO, the LUMO of an a keto acid is at a ‡ 0:122jbj; see also question 23).

Orbital Interaction Theory of Organic Chemistry, Second Edition. Arvi Rauk Copyright ( 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-35833-9 (Hardback); 0-471-22041-8 (Electronic)

REFERENCES AND NOTES

1.Fukui, K., Acc. Chem. Res., 1971, 4, 57.

2.(a) Fukui, K., Angew. Chem. Int. Ed. Engl., 1982, 21, 801. (b) Fukui, K., selected papers, Frontier Orbitals and Reaction Paths, Fukui, K.; Fujimoto, H., Eds., World Scienti®c London, 1997.

3.(a) Woodward, R. B.; Ho¨mann, R., The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970. (b) Woodward, R. B.; Ho¨mann, R., Angew. Chem. Int. Ed. Engl., 1969, 8, 781. (c) Woodward, R. B.; Ho¨mann, R., Acc. Chem. Res., 1968, 1, 17.

4.Klopman, G., J. Am. Chem. Soc., 1968, 90, 223.

5.Salem, L., J. Am. Chem. Soc., 1968, 90, 543, 553.

6.Ho¨mann, R., Acc. Chem. Res., 1971, 4, 1±9.

7.Fleming, I., Frontier Orbitals and Organic Chemical Reactions, Wiley, New York, 1976.

8.Ho¨mann, R., J. Mol. Struct. (Theochem.), 1998, 424, 1±6.

9.(a) Shaik, S. S., J. Am. Chem. Soc., 1981, 103, 3692. (b) Pross, A.; Shaik, S. S., Acc. Chem. Res., 1983, 16, 363. (c) Shaik, S. S., Prog. Phys. Org. Chem., 1985, 15, 197. (d) Pross. A., Adv. Phys. Org. Chem., 1985, 21, 99.

10.(a) Halevi, E. A., Helvet. Chim. Acta, 1975, 58, 2136. (b) Halevi, E. A., Angew. Chem. Int. Ed. Engl., 1976, 15, 593. (c) Halevi, E. A., Nouv. J. Chim., 1976, 15, 593. (d) Katriel, J.; Halevi, E. A., Theoret. Chim. Acta, 1975, 40, 1. (e) Bachler, V.; Halevi, E. A., Theoret. Chim. Acta, 1981, 59, 595. (f ) Halevi, E. A.; Thiel. W., J. Photochemistry, 1985, 28, 373. (g) Halevi, E. A.; Rom, R., Israel J. Chem., 1989, 29, 311.

11.Halevi, E. A., Orbital Symmetry and Reaction Mechanism: The OCAMS Way, SpringerVerlag, New York, 1992.

12.Rauk, A.; Cannings, R., SHMO, A Simple Huckel Molecular Orbital Theory Calculator, http://www.chem.ucalgary.ca/SHMO/.

13.(a) Dauben, W. G.; Salem, L.; Turro, N. J., Acc. Chem. Res., 1975, 8, 41. (b) Turro, N. J.,

J. Mol. Struct. (Theochem.), 1998, 424, 77±82.

14.Michl, J.; Bonacic-Koutecky, V., Electronic Aspects of Organic Photochemistry, Wiley, New York, 1990.

313

314REFERENCES AND NOTES

15.Turro, N. J., Modern Molecular Photochemistry, University Science Books, Mill Valley, CA, 1991.

16.Gilbert, A.; Baggott, J. E., Essentials of Molecular Photochemistry, CRC Press, Boca Raton, FL, 1991.

17.Many of the ideas and examples in Chapter 1 have been extracted from notes of a course given by Kurt Mislow to a class of Princeton graduate students in 1968.

18.Ja¨e, H. H.; Orchin, M., Symmetry in Chemistry, Wiley, New York, 1965.

19.(a) Masamune, S.; Kennedy, R. M.; Petersen, J. S.; Houk, K. N.; Wu, Y.-D., J. Am. Chem. Soc., 1986, 108, 7404±7405. (b) Imai, T.; Tamura, T.; Yamamuro, A.; Sato, T.; Wollmann, T. A.; Kennedy, R. M.; Masamune, S., J. Am. Chem. Soc., 1986, 108, 7402±7404.

20.Luger, P.; Buschmann, J.; McMullan, R. K.; Ruble, J. R.; Matias, P.; Je¨rey, G. A., J. Am. Chem. Soc., 1986, 108, 7825.

21.Stair, P. C., J. Am. Chem. Soc., 1982, 104, 4044.

22.Kuck, D.; BoÈgge, H., J. Am. Chem. Soc., 1986, 108, 8107.

23.de Boer, J. A. A.; Reinhoudt, D. N.; Harkema, S.; van Hummel, G. J.; de Jong, F., J. Am. Chem. Soc., 1982, 104, 4073.

24.Eaton, P. E.; Cole, Jr., T. W., J. Am. Chem. Soc., 1964, 86, 3157.

25.Paquette, L. A.; Ternansky, R. J.; Balogh, D. W.; Kentgen, G., J. Am. Chem. Soc., 1983, 105, 5446.

26.Shanzer, A.; Libman, J.; Gottlieb, H.; Frolow, F., J. Am. Chem. Soc., 1982, 104, 4220.

27.For a review, see Buda, A. B.; Auf der Heyde, T.; Mislow, K., Angew. Chem. Int. Ed. Engl., 1992, 31, 989±1007.

28.(a)Zabrodsky, H.; Peleg, S.; Avnir, D., J. Am. Chem. Soc., 1992, 114, 7843±7851. (b) Ferrarini, A.; Nordio, P. L., J. Chem. Soc. Perkin, 1998, 2, 455±460.

29.Mislow, K., Introduction to Stereochemistry, W. A. Benjamin, New York, 1965.

30.(a) Mislow, K., Bull. Soc. Chim. Belg., 1977, 86, 595. (b) Mislow. K.; Siegel, J., J. Am. Chem. Soc., 1984, 106, 3319.

31.Juaristi, E., Stereochemistry and Conformational Analysis, Wiley-Interscience, New York, 1991.

32.Eliel, E. L.; Wilen, S. H.; Mander, L. N., Stereochemistry of Organic Compounds, WileyInterscience, New York, 1994.

33.Morrison, J. D., Ed., Asymmetric Synthesis, Vols. 2 and 3, Academic, Orlando, FL, 1983.

34.Marckwald, W., Ber., 1904, 37, 349.

35.(a) Katsuki, T.; Sharpless, K. B., J. Am. Chem. Soc., 1980, 102, 5974. (b) Rossiter, B. E.; Katsuki, T.; Sharpless, K. B., J. Am. Chem. Soc., 1981, 103, 464.

36.(a) Finn, M. G.; Sharpless, K. B., J. Am. Chem. Soc., 1991, 113, 113. (b) Woodward, S. S.; Finn, M. G.; Sharpless, K. B., J. Am. Chem. Soc., 1991, 113, 106.

37.Atta-ur-Rahman; Shah, Z., Stereoselective Synthesis in Organic Chemistry, Springer-Verlag, New York, 1993.

38.Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B., Chem. Rev., 1994, 94, 2483±2547.

39.Heathcock, C. H., in Asymmetric Reactions and Processes in Chemistry, Eliel, E. L.; Otsuka, S., Eds., ACS Symposium Series 185, American Chemical Society, Washington, DC, 1982, p. 55.

40.Brown, H. C., Hydroboration, Benjamin, New York, 1963.

41.Midland, M. M., Chem. Rev., 1989, 89, 1553.

42.Pirkle, W. H.; Beare, S. D., J. Am. Chem. Soc., 1968, 90, 6250.

43.Pirkle, W. H.; Beare, S. D., J. Am. Chem. Soc., 1969, 91, 5150, and references therein.

44.Hofer, O., Top. Stereochem., 1976, 9, 111.

REFERENCES AND NOTES

315

45.Takeuchi, Y.; Itoh, N.; Note, H.; Koizumi, T.; Yamaguchi, K., J. Am. Chem. Soc., 1991, 113, 6318.

46.Hohenberg, P.; Kohn, W., Phys. Rev. B, 1964, 136, 864±871.

47.Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, MacMillan, New York, 1982, p. 192.

48.Hariharan, P. C.; Pople, J. A., Theoret. Chim. Acta, 1973, 28, 213.

49.Baker, J.; Muir, M.; Andzelm, J., J. Chem. Phys., 1995, 102, 2063±2079. B3LYP is called ACM (adiabatic connection model) in this paper.

50.Mebel, A. M.; Morokuma, K.; Lin, M. C., J. Chem. Phys., 1995, 103, 7414±7421.

51.Qin, Y.; Wheeler, R. A., J. Phys. Chem., 1996, 100, 10554±10566.

52.Barone, V.; Adamo, C.; Lelj, F., J. Chem. Phys., 1995, 102, 364±370. (b)

53.Armstrong, D. A.; Yu, D.; Rauk, A., Can. J. Chem., 1996, 76, 1192±1199.

54.Schlegel, H. B., J. Comput. Chem., 1982, 3, 214.

55.Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

56.JANAF Thermochemical Tables, 2nd ed., Natl. Stand. Ref. Data Ser. NSRDS-NBS 31, U.S. Government Printing O½ce, Washington, DC, 1971.

57.An ab initio form of PMO theory has been developed: (a) Bernardi, F.; Bottoni, A., Theor.

Chim. Acta, 1981, 58, 245. (b) Bernardi, F.; Bottoni, A., in Computational Theoretical Organic Chemistry, Csizmadia, I. G.; Daudel. R., Eds., Reidel, Dordrecht, 1981, pp. 197±231.

(c) Bernardi, F.; Bottoni, A.; Fossey, J.; Sorba, J., Tetrahedron, 1986, 42, 5567±5580.

58.Albright, T. A.; Burdett, J. K.; Whangbo, M.-H., Orbital Interactions in Chemistry, WileyInterscience, New York, 1985.

59.Wolfsberg, M.; Helmholtz, L., J. Chem. Phys., 1952, 20, 837.

60.Ho¨mann, R., J. Chem. Phys., 1963, 39, 1397.

61.Woolley, R. G., Nouv. J. Chim., 1981, 5, 219, 227.

62.(a) Bischof, P.; Hashmall, J. A.; Heilbronner, E.; Hornung, V., Helv. Chim. Acta, 1969, 52, 1745. (b) Haselbach, E.; Heilbronner, E.; Schroder, G., Helv. Chim. Acta, 1971, 54, 153.

63.Masclet, P.; Grosjean, D.; Mouvier, G.; Dubois, J., J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225.

64.Robin, M. B., Higher Excited States of Polyatomic Molecules, vols. I, II, III, Academic, New York, 1975.

65.Baird, N. C., J. Chem. Ed., 1977, 54, 291±293.

66.Kim, E. K.; Kochi, J. K., J. Am. Chem. Soc., 1991, 113, 4962.

67.Bingham, R. C., J. Am. Chem. Soc., 1975, 97, 6743.

68.Chen, Y.; Tschuikow-Roux, E.; Rauk, A., J. Phys. Chem., 1991, 95, 9832.

69.Gill, P. M. W.; Radom, L., J. Am. Chem. Soc., 1988, 110, 4931±4941.

70.Tachikawa, H.; Ogasawara, M., J. Phys. Chem., 1990, 94, 1746.

71.Barnett, R. N.; Landman, U.; Dhar, S.; Kestner, N. R.; Jortner, J.; Nitzan, A., J. Chem. Phys., 1989, 91, 7797.

72.Van der Waals forces are very complex and manifest themselves even at distances at which it is unreasonable to assume that orbital interactions can occur. An explanation due to London in terms of the mutual attraction of induced dipoles (dispersion forces) accounts for the longrange behavior. The unoccupied±occupied orbital interactions will be the dominant component of van der Waals forces at short range. See Kauzmann, W., Quantum Chemistry, Academic, New York, 1957, Chapter 13, for a discussion of dispersion forces.

73.Gimarc, B. M., Acc. Chem. Res., 1974, 7, 384.

74.Walsh, A. D., J. Chem. Soc., 1953, 2260; and papers immediately following.

316REFERENCES AND NOTES

75.(a) Peyerimho¨, S. D.; Buenker, R. J.; Allen, L. C., J. Chem. Phys., 1966, 45, 734. (b) Allen,

L.C.; Russell, J. D., J. Chem. Phys., 1967, 46, 1029.

76.(a) Ritchie, C. D., J. Am. Chem. Soc., 1983, 105, 7313±7318. (b) Ritchie, C. D., in Nucleophilicity, Harris, J. M.; McManus, S. P., Eds., Advances in Chemistry Series, American Chemical Society, Washington, DC, 1986.

77.Armentrout, P. B.; Simons, J., J. Am. Chem. Soc., 1992, 114, 8627±8633.

78.Shaik, S. S., J. Org. Chem., 1987, 52, 1563±1568.

79.Sa®, B.; Choho, K.; De Proft, F.; Geerlings, P., J. Phys. Chem. A, 1998, 102, 5253±5259.

80.Rauk, A.; Sorensen, T. S.; Maerker, C.; de Carneiro, J. W.; Sieber, S.; Schleyer, P. v. R.,

J.Am. Chem. Soc., 1996, 118, 3761±3762.

81.Maerker, C.; Schleyer, P. v. R.; Koch, W.; Rauk, A.; Sorensen, T. S.; Mareda, J., J. Am. Chem. Soc., in press.

82.(a) Schmidt, H.; Schweig, A., Tetrahedron Lett., 1973, 981. (b) Schmidt, H.; Schweig, A.,

Angew. Chem. Int. Ed. Engl., 1973, 12, 307.

83.(a) Benson, S. W., J. Chem. Ed., 1965, 42, 502. (b) Kerr, J. A., Chem. Rev., 1966, 66, 465.

84.Ho¨mann, R.; Imamura, A.; Hehre, W. J., J. Am. Chem. Soc., 1968, 90, 1499, and references therein.

85.Paulson, B. P.; Curtiss, L. A.; Bal, B.; Closs, G. L.; Miller, J. R., J. Am. Chem. Soc., 1996, 118, 378±387, and references therein.

86.Schleyer, P. v. R.; Kaupp, M.; Hampel, F.; Bremer, M.; Mislow, K., J. Am. Chem. Soc., 1992, 114, 6791±6797.

87.Brundle, C. R.; Robin, M. B.; Kuebler, N. A.; Basch, H., J. Am. Chem. Soc., 1972, 94, 1451.

88.Kobayashi, T.; Miki, S.; Yoshida, Z.; Asako, Y.; Kajimoto, C., J. Am. Chem. Soc., 1988, 110, 5622.

89.Honegger, E.; Yang, Z. Z.; Heilbronner, E.; Alder, R. W.; Moss, R. E.; Sessions, R. B.,

J.Elect. Spectrosc. Rel. Phenom., 1985, 36, 297.

90.Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules, Halsted, New York, 1981.

91.(a) Badger, R. M., J. Chem. Phys., 1934, 2, 128. (b) Badger, R. M., J. Chem. Phys., 1935, 3, 710. (c) Gordy, W., J. Chem. Phys., 1946, 14, 305.

92.(a) Mack. H. G.; Christen, D.; Oberhammer, H., J. Mol. Struct., 1988, 190, 215. (b) Christen, D.; Gupta, O. D.; Kadel, J.; Kirchmeier, R. L.; Mack, H. G.; Oberhammer, H.; Shreeve,

J.M., J. Am. Chem. Soc., 1991, 113, 9131.

93.Rùggen, I.; Dahl, T., J. Am. Chem. Soc., 1992, 114, 511, and references therein.

94.David, S.; Eisenstein, O.; Hehre, W. J.; Salem, L.; Ho¨mann, R., J. Am. Chem. Soc., 1973, 95, 3806.

95.Laube, T.; Hollenstein, S., J. Am. Chem. Soc., 1992, 114, 8812±8817, and references therein.

96.For a review of the structural consequences of hyperconjugation, see Radom, L., Prog. Theor. Org. Chem., 1982, 3, 1.

97.Zurawski, B.; Ahlrichs, R.; Kutzelnigg, W., Chem. Phys. Lett., 1973, 21, 309.

98.(a) Raghavachari, K.; Haddon, R. C.; Schleyer, P. v. R.; Schaefer III, H. F., J. Am. Chem. Soc., 1983, 105, 5915. (b) Yoshimine, M.; McLean, A. D.; Liu, B.; DeFrees, D. J.; Binkley,

J.S., J. Am. Chem. Soc., 1983, 105, 6185.

99.(a) Hawthorne, M. F., Acc. Chem. Res., 1968, 1, 281. (b) Lipscomb, W. N., Acc. Chem. Res., 1973, 6, 257.

100.Walsh, A. D., Trans. Faraday Soc., 1949, 45, 179.

101.For a discussion of the bonding in cyclopropane and other molecules with ``bent'' bonds, see Wiberg, K. B., Acc. Chem. Res., 1996, 29, 229±234.

REFERENCES AND NOTES

317

102.SHMO is written in Java and is available on the internet at http://www.chem.ucalgary.ca/ SHMO/.

103.(a) Whitman, D. W.; Carpenter, B. K., J. Am. Chem. Soc., 1982, 104, 6473±6474. (b) Carpenter, B. K., J. Am. Chem. Soc., 1983, 105, 1700±1701. (c) Whitman, D. W.; Carpenter, B. K., J. Am. Chem. Soc., 1980, 102, 4272±4274.

104.Borden, W. T.; Davidson, E. R.; Hart, P., J. Am. Chem. Soc., 1978, 100, 388±392.

105.Van Catledge, F. A., J. Org. Chem., 1980, 45, 4801.

106.Mullay, J., J. Am. Chem. Soc., 1985, 107, 7271±7275.

107.Boyd, R. J.; Edgecombe, K. E., J. Am. Chem. Soc., 1988, 110, 4182±4186.

108.Reed, L. H.; Allen, L. C., J. Phys. Chem., 1992, 96, 157.

109.Meot-Ner (Mautner), M.; Sieck, L. W., J. Am. Chem. Soc., 1991, 113, 4448.

110.Lias, S. G.; Liebman, J. F.; Levin, R. D., J. Phys. Chem. Ref. Data, 1984, 13, 695; proton a½nities of 800 compounds.

111.Bailey, W. F.; Nurmi, T. T.; Patricia, J. J.; Wang, W., J. Am. Chem. Soc., 1987, 109, 2442± 2448.

112.Bailey, W. F.; Khanolkar, A. D.; Gavaskar, K. V., J. Am. Chem. Soc., 1992, 114, 8053±8060.

113.Bailey. W. F.; Khanolkar, A. D.; Gavaskar, K. V.; Ovaska, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B., J. Am. Chem. Soc., 1991, 113, 5720.

114.For a review of electrophilic additions to alkenes and alkynes, see Fahey, R. C., Top. Stereochem., 1968, 3, 237±342.

115.Rauk, A.; Barriel, J. M., Chem. Phys., 1977, 25, 409.

116.Shea, K. J.; Kim, J.-S., J. Am. Chem. Soc., 1992, 114, 3044±3051.

117.Traetteberg, M., Acta Chem. Scand., 1975, B29, 29.

118.Wijsman, G. W.; de Wolf, W. H.; Bickelhaupt, F., J. Am. Chem. Soc., 1992, 114, 9191±9192.

119.March, J., Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 3rd ed., Wiley, New York, 1985.

120.Raabe, G.; Michl, J., Chem. Rev., 1985, 85, 419.

121.Gaspar, P. P., in Reactive Intermediates, vol. 3, Jones, M.; Moss, R. A., Eds., Wiley, New York, 1985, Chapter 9.

122.Maier, G.; Mihm, G.; Reisenauer, H. P.; Littman, D., Chem. Ber., 1984, 117, 2351.

123.Shin, S. K.; Irikura, K. K.; Beauchamp, J. L.; Goddard III, W. A., J. Am. Chem. Soc., 1988, 110, 24±30.

124.Wang, Y.; Poirier, R. A., Can. J. Chem., 1998, 76, 477±482.

125.Determined indirectly, see ref. 123.

126.(a) West, R.; Fink, M. J.; Michl, J., Science, 1981, 214, 1343. (b) Tokitoh, N.; Suzuki, H.; Okazaki, R., J. Am. Chem. Soc., 1993, 115, 10428±10429.

127.Stams, D. A.; Thomas, T. D.; MacLaren, D. C.; Ji, D.; Morton, T. H., J. Am. Chem. Soc., 1990, 112, 1427±1434.

128.(a) Creary, X.; Mehrsheikh-Mohammadi, M. E.; Eggers, M. D., J. Am. Chem. Soc., 1987, 109, 2435±2442. (b) Creary, X., Acc. Chem. Res., 1985, 18, 3±8.

129.Fornarini, S.; Muraglia, V., J. Am. Chem. Soc., 1989, 111, 873.

130.(a) Olah, G. A.; Liang, G.; Mateescu, G. D.; Riemenschneider, J. L., J. Am. Chem. Soc., 1973, 95, 8698. (b) Saunders, M.; Kates, M. R., J. Am. Chem. Soc., 1983, 105, 3571.

131.Olah, G. A.; Rasul, G.; Prakash, G. K. S., J. Am. Chem. Soc., 1999, 121, 9615±9617.

132.Lambert, J. B.; Zhao, Y., Angew. Chem. Int. Ed. Engl., 1997, 36, 400.

133.For a review of gas phase carbanion chemistry, see Squires, R. R., Acc. Chem. Res., 1992, 25, 461±467.

318 REFERENCES AND NOTES

134.For a review of carbanions generated next to heteroatoms, including nitrogen, see Kessar, S. V.; Singh, P., Chem. Rev., 1997, 97, 721±738.

135.Farnham, W. B.; Dixon, D. A.; Calabrese, J. C., J. Am. Chem. Soc., 1988, 110, 2607±2611.

136. (a) Boese, R.; Paetzold, P.; Tapper, A.; Ziembinski, R., Chem. Ber., 1989, 122, 1057.

(b) Olmsted, M. M.; Power, P. P.; Weese, K. J.; Doedens, R. J., J. Am. Chem. Soc., 1987, 109, 2541. (c) Locquenghien, K. H. v.; Baceiredo, A.; Boese, R.; Bertrand, G., J. Am. Chem. Soc., 1991, 113, 5062.

137.Freriks, I. L.; de Koning, L. J.; Nibbering, N. M. M., J. Am. Chem. Soc., 1991, 113, 9119±9124.

138.Bickelhaupt, F. M.; Ziegler, T.; Schleyer, P. v. R., Organometallics, 1996, 15, 1477±1487.

139.Abell, P. I., in Free Radicals, vol. II, Kochi, J. K., Ed., Wiley, New York, 1973, p. 96.

140.McMillen, D. F.; Golden, D. M., Ann. Rev. Phys. Chem., 1982, 33, 493±532, and references therein.

141.Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X., J. Am. Chem. Soc., 1991, 113, 9790±9795, and references therein.

142.Sustmann, R.; Korth, H.-G., Adv. Phys. Org. Chem., 1990, 26, 131±178.

143.Bordwell, F. G.; Zhang, X. M.; Alnajjar, M. S., J. Am. Chem. Soc., 1992, 114, 7623±7629.

144.Berkowitz, J.; Ellison, G. B.; Gutman, D., J. Phys. Chem., 1994, 98, 2744.

145.Griller, D.; Lossing, F. P., J. Am. Chem. Soc., 1981, 103, 1586.

146.Leroy, G.; Sana, M.; Wilante, C., J. Mol. Struct., 1991, 228, 37±45.

147.Ruscic, B.; Berkowitz, J., J. Chem. Phys., 1992, 97, 1818±1823.

148.Viehe, H.-G.; Janousek, Z.; MereÂnyi, R.; Stella, L., Acc. Chem. Res., 1985, 18, 148±154.

149.Yu, D.; Rauk, A.; Armstrong, D. A., J. Am. Chem. Soc., 1995, 117, 1789±1796.

150.Rauk, A.; Yu, D.; Taylor, J.; Shustov, G. V.; Block, D. A.; Armstrong, D. A., Biochemistry, 1999, 38, 9089±9096.

151.Jensen, P.; Bunker. P. R., J. Chem. Phys., 1988, 89, 1327, and earlier references.

152.Bauschlicher, Jr., C. W.; Schaefer III, H. F.; Bagus, P. S., J. Am. Chem. Soc., 1977, 99, 7106± 7110.

153.Wasserman, E.; Kuck, V. J.; Hutton, R. S.; Anderson, E. D.; Yager, W. A., J. Chem. Phys., 1971, 54, 4120.

154.Murray, K. K.; Leopold, D. G.; Miller, T. M.; Lineberger, W. C., J. Chem. Phys., 1988, 89, 5442.

155.(a) Koda, S., Chem. Phys. Lett., 1978, 55, 353. (b) Koda, S., Chem. Phys., 1982, 66, 383.

156.Kim, S.-J.; Hamilton, T. P.; Schaefer III, H. F., J. Chem. Phys., 1991, 94, 2063.

157.Russo, N.; Sicilia, E.; Toscano, M., J. Chem. Phys., 1992, 97, 5031±5036.

158.Kesselmayer, M. A.; Sheridan, R. S., J. Am. Chem. Soc., 1986, 108, 99.

159.Du, X.-M.; Fan, H.; Goodman, J. L.; Kesselmayer, M. A.; Krogh-Jespersen, K.; La Villa, J. A.; Moss, R. A.; Shen, S.; Sheridan, R. S., J. Am. Chem. Soc., 1990, 112, 1920.

160.Suh, D.; Pole, D. L.; Warkentin, J.; Terlouw, J. K., Can. J. Chem., 1996, 74, 544±558.

161.Arduengo III, A. J.; Harlow, R. L.; Kline, M., J. Am. Chem. Soc., 1991, 113, 361.

162.Arduengo III, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M., J. Am. Chem. Soc., 1992, 114, 5530.

163.Richards, Jr., C. A.; Kim, S. J.; Yamaguchi, Y.; Schaefer III, H. F., J. Am. Chem. Soc., 1995, 117, 10104±10107.

164.McMahon, R. J.; Abelt, C. J.; Chapman, O. L.; Johnson, J. W.; Kreil, C. L.; LeRoux, J.-P.; Mooring, A. M.; West, P. R., J. Am. Chem. Soc., 1987, 109, 2456.

165.Maier, G.; Reisenaur, H. P.; Schwab, W.; Carsky, P.; Hess, Jr., B. A.; Schaad, L. J., J. Am. Chem. Soc., 1987, 109, 5183.

Соседние файлы в предмете Химия