method_dynamics
.pdf
Ɂɚɞɚɱɚ 4. ȼɵɱɢɫɥɢɬɶ ɦɨɦɟɧɬɵ ɢɧɟɪɰɢɢ ɨɬɧɨɫɢɬɟɥɶɧɨ |
ɨɫɟɣ ɤɨɨɪɞɢɧɚɬ |
x, y, z ɬɨɧɤɨɣ ɨɞɧɨɪɨɞɧɨɣ ɤɪɭɝɨɜɨɣ ɩɥɚɫɬɢɧɵ ɪɚɞɢɭɫɚ r , |
ɜɧɭɬɪɢ ɤɨɬɨɪɨɣ |
ɜɵɪɟɡɚɧ ɤɜɚɞɪɚɬ ɫɨ ɫɬɨɪɨɧɨɣ a , ɰɟɧɬɪɵ ɤɜɚɞɪɚɬɚ ɢ ɤɪɭɝɚ ɫɨɜɩɚɞɚɸɬ. M –- ɦɚɫɫɚ ɩɥɚɫɬɢɧɵ ɫ ɜɵɪɟɡɨɦ.
J x |
J x(1) |
J x(2) , |
ɝɞɟ |
Jx(1) |
– ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ |
ɤɪɭɝɚ,
J(2)
x – ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ ɤɜɚɞɪɚɬɚ.
Ɉɩɪɟɞɟɥɢɬɟ JY , JZ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ.
Jx(1) |
M (1)r2 |
, |
Jx(2) |
|
M (2)a2 |
. |
|
2 |
6 |
||||||
|
|
|
|
||||
ɇɚɣɞɟɦ |
ɦɚɫɫɵ |
|
ɤɪɭɝɚ ɢ |
ɤɜɚɞɪɚɬɚ |
|||
M (1) ,M (2) ɱɟɪɟɡ M :
M |
|
M (1) |
M (2) |
|
|
M (1) M (1) |
a2 |
|||||||||||||||
|
Σr2 |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M (1) (1 |
a2 |
), |
|
|
|
|
|
|
|
|
||||||||||||
Σr2 |
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
M |
(1) |
|
|
|
Σr2 |
|
|
|
|
M , |
|
|
|
|
|
|||||||
|
|
|
Σr |
2 |
a |
2 |
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
M |
(2) |
|
|
M |
|
(1) |
|
a2 |
|
|
|
|
|
a2 |
|
M , |
||||||
|
|
|
|
|
|
|
|
Σr |
2 |
|
|
|
Σr |
2 |
a |
2 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
J x |
|
|
3Σr4 |
|
a4 |
|
M . |
|
|
|
|
|
||||||||||
|
|
6(Σr |
2 |
|
a |
2 |
) |
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
ȿɳɺ ɧɟɫɤɨɥɶɤɨ ɡɚɞɚɱ ɞɥɹ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨɝɨ ɪɟɲɟɧɢɹ:
ɇɚɣɬɢ ɨɫɟɜɵɟ ɦɨɦɟɧɬɵ ɢɧɟɪɰɢɢ |
J x , J y |
ɞɥɹ |
ɨɞɧɨɪɨɞɧɨɝɨ ɬɨɧɤɨɝɨ ɤɪɭɝɥɨɝɨ ɞɢɫɤɚ |
ɪɚɞɢɭɫɚ |
R ɢ |
ɦɚɫɫɨɣ M . Ɉɫɢ ɋɯ ɢ ɋɭ ɩɪɨɯɨɞɹɬ ɱɟɪɟɡ ɰɟɧɬɪ ɞɢɫɤɚ ɢ ɥɟɠɚɬ ɜ ɟɝɨ ɩɥɨɫɤɨɫɬɢ.
ɇɚɣɬɢ J x , J y ɞɥɹ ɬɪɟɭɝɨɥɶɧɨɣ ɩɥɚɫɬɢɧɵ ɫ ɤɚɬɟɬɚɦɢ a
ɢ b ɢ ɦɚɫɫɨɣ M , ɚ ɬɚɤɠɟ Jx1 , J y1 .Ɍɨɱɤɚ ɋ – ɰɟɧɬɪ ɦɚɫɫ ɬɪɟɭɝɨɥɶɧɢɤɚ.
11
ɉɪɹɦɨɣ ɫɩɥɨɲɧɨɣ ɤɪɭɝɥɵɣ ɤɨɧɭɫ ɦɚɫɫɨɣ M ɢ ɪɚɞɢɭɫɨɦ ɨɫɧɨɜɚɧɢɹ R . Ɉɫɶz ɧɚɩɪɚɜɥɟɧɚ ɜɞɨɥɶ ɨɫɢ
ɫɢɦɦɟɬɪɢɢ. Ɉɬɜɟɬ Jz 0,3MR2 .
ɋɩɥɨɲɧɨɣ ɲɚɪ ɦɚɫɫɨɣ M ɢ ɪɚɞɢɭɫɨɦ R ɨɫɶ z ɧɚɩɪɚɜɥɟɧɚ ɜɞɨɥɶ ɞɢɚɦɟɬɪɚ.
Ɉɬɜɟɬ Jz 0,4MR2 .
§3. Ʉɨɥɟɛɚɬɟɥɶɧɨɟ ɞɜɢɠɟɧɢɟ. ɋɜɨɛɨɞɧɵɟ ɤɨɥɟɛɚɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɣ ɬɨɱɤɢ
Ɂɚɞɚɱɚ ʋ 1. Ƚɪɭɡ ɜɟɫɨɦ Ɋ = 98 ɧ ɩɨɞɜɟɲɟɧ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ, ɧɚɯɨɞɢɜɲɟɣɫɹ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɜ ɩɨɤɨɟ ɜ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɦ ɫɨɫɬɨɹɧɢɢ, ɢ ɨɬɩɭɳɟɧ ɛɟɡ ɬɨɥɱɤɚ. ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɤɨɥɟɛɚɧɢɹ ɝɪɭɡɚ, ɟɫɥɢ ɢɡɜɟɫɬɧɨ, ɱɬɨ ɞɥɹ ɞɟɮɨɪɦɚɰɢɢ ɩɪɭɠɢɧɵ ɧɚ 1 ɫɦ ɧɚɞɨ ɩɪɢɥɨɠɢɬɶ ɤ ɧɟɣ ɫɢɥɭ, ɦɨɞɭɥɶ ɤɨɬɨɪɨɣ ɪɚɜɟɧ 14,4 ɧ.
Ɋɟɲɟɧɢɟ: ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɧɢɡ. Ɍɨɱɤɚ Ɉ – ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɝɪɭɡɚ. ȼ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɝɪɭɡ ɩɨɞɜɟɲɟɧ ɤ ɤɨɧɰɭ Ɇ0 ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ ɩɪɭɠɢɧɵ. ȼ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɤ ɝɪɭɡɭ ɩɪɢɥɨɠɟɧɵ ɫɢɥɵ: Ɋ – ɟɝɨ ɜɟɫ, ɧɚɩɪɚɜɥɟɧɧɵɣ ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɧɢɡ, ɫɬɚɬɢɱɟɫɤɚɹ ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ Fɫɬ=cd, ɧɚɩɪɚɜɥɟɧɧɚɹ ɜɜɟɪɯ. ɂɡ ɭɫɥɨɜɢɹ ɪɚɜɧɨɜɟɫɢɹ ɝɪɭɡɚ ɫɥɟɞɭɟɬ: P Fɫɬ 0 ɢɥɢ
P cd 0, ɨɬɤɭɞɚ ɧɚɣɞɟɦ d=Ɋ/ɫ – ɫɬɚɬɢɱɟɫɤɭɸ ɞɟɮɨɪɦɚɰɢɸ ɩɪɭɠɢɧɵ, ɫ – ɤɨɷɮɮɢɰɢɟɧɬ ɭɩɪɭɝɨɫɬɢ ɩɪɭɠɢɧɵ.
12
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ:
ɉɪɢ t 0: x x0 |
|
P |
, x x0 0 |
, |
|
||||
|
|
c |
|
|
FcD, ɝɞɟ F – ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ,
(ɧɚɩɪɚɜɥɟɧɚ ɜɫɟɝɞɚ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ ɫɦɟɳɟɧɢɸ); D – ɫɦɟɳɟɧɢɟ ɤɨɧɰɚ ɩɪɭɠɢɧɵ ɢɡ ɧɟɧɚɩɪɹɠɟɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ,
ɬ. ɟ. Dx MM0 d x .
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, Fx c(d x) . |
(1) |
ɋɨɫɬɚɜɢɦ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɜ ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ:
|
|
|
|
|
mx |
P Fx , |
|
|
|
|
|
|
|
(2) |
|||||
ɢɫɩɨɥɶɡɭɹ (1), ɩɨɥɭɱɢɦ ɢɡ (2): |
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
P |
x |
P cd cx . |
|
|
|
|
|
|
|
(3) |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
g |
|
|
|
|
|
|
|
|
|
|
|||
Ɂɚɩɢɲɟɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ (3) ɜ ɜɢɞɟ |
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
x k2 x |
0 , |
|
|
|
|
|
|
|
(4) |
||||
ɝɞɟ |
k |
cg |
– ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ ɤɨɥɟɛɚɧɢɣ (ɭɝɥɨɜɚɹ ɱɚɫɬɨɬɚ). |
|
|||||||||||||||
P |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ɂɚɩɢɲɟɦ ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ (4) |
Ο2 k2 |
0. |
|||||||||||||||||
Ʉɨɪɧɢ ɭɪɚɜɧɟɧɢɹ |
|
|
|
|
|
Ο1,2 ρki . |
|
|
|
|
|
|
|
|
|||||
Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4) ɡɚɩɢɲɟɦ ɜ ɜɢɞɟ |
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
x |
c1 cos(kt) c2 sin(kt). |
|
|
|
|
|
(5) |
|||||
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɫɬɨɹɧɧɵɯ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ, ɜɵɱɢɫɥɢɦ ɫɤɨɪɨɫɬɶ |
|||||||||||||||||||
|
|
|
|
|
|
x c1k sin(kt) c2k cos(kt) . |
|
P |
|
|
|
(6) |
|||||||
ɉɨɞɫɬɚɜɢɦ(5) ɢ(6) ɜɧɚɱɚɥɶɧɵɟɭɫɥɨɜɢɹ t |
0 |
x x0 |
|
, |
x |
x0 |
0 . |
||||||||||||
|
|||||||||||||||||||
|
|
|
|
|
P |
|
|
|
|
|
|
|
c |
|
|
|
|||
ɇɚɯɨɞɢɦ ɫ1 |
|
x0 |
|
, |
c2 |
0. |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
||||
ɍɪɚɜɧɟɧɢɹɞɜɢɠɟɧɢɹɝɪɭɡɚɩɪɢɦɟɬɜɢɞ x |
P cos(kt) |
|
P cos( |
cgt). |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
c |
|
|
|
c |
|
|
P |
|
ɉɨɞɫɬɚɜɥɹɟɦ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ k |
cg |
12 ɫ 1, |
P |
6,8 ɫɦ. |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
P |
|
c |
|
|
|
|||
Ⱥɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ |
|
a = 6,8 cɦ; |
|
|
|
|
|
|
|
||||||||||
ɧɚɱɚɥɶɧɚɹ ɮɚɡɚ ɤɨɥɟɛɚɧɢɣ |
Į = –ʌ/2; |
|
|
|
|
|
|
|
|
||||||||||
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ |
|
k = 12 ɫ-1. |
|
|
|
|
|
|
|
||||||||||
13
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɝɪɭɡɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ T 2Σ 0.52 ɫ. k
Ɂɚɞɚɱɚ ʋ 2. ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ ɫɭɞɧɚ ɜɟɫɨɦ Ɋ ɜ ɫɩɨɤɨɣɧɨɣ ɜɨɞɟ. ɉɥɨɳɚɞɶ ɟɝɨ ɫɟɱɟɧɢɹ ɧɚ ɭɪɨɜɧɟ ɫɜɨɛɨɞɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɞɵ ɫɱɢɬɚɬɶ ɧɟ ɡɚɜɢɫɹɳɟɣ ɨɬ ɤɨɥɟɛɚɧɢɣ ɢ ɪɚɜɧɨɣ S. ȼ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɰɟɧɬɪɭ ɬɹɠɟɫɬɢ ɋ, ɧɚɯɨɞɢɜɲɟɦɭɫɹ ɜ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɫɤɨɪɨɫɬɶ v0. ȼɹɡɤɨɫɬɶɸ ɜɨɞɵ ɩɪɟɧɟɛɪɟɱɶ. ɍɞɟɥɶɧɵɣ ɜɟɫ ɜɨɞɵ ɪɚɜɟɧ Ȗ= 1 T/ɦ3.
Ɋɟɲɟɧɢɟ.
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ; |
||
ɬɨɱɤɚ Ɉ – ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ |
||
ɪɚɜɧɨɜɟɫɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ. ɉɪɢ |
||
ɷɬɨɦ ɜɵɫɨɬɚ ɩɨɞɜɨɞɧɨɣ ɱɚɫɬɢ ɫɭɞɧɚ ɪɚɜɧɚ |
||
d. |
|
|
Ʉ ɫɭɞɧɭ ɩɪɢɥɨɠɟɧɵ: Ɋ – ɜɟɫ ɜ ɰɟɧɬɪɟ |
||
ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ, Rɫɬ – ɧɨɪɦɚɥɶɧɚɹ |
||
ɫɬɚɬɢɱɟɫɤɚɹ ɪɟɚɤɰɢɹ ɜɨɞɵ ɜ ɰɟɧɬɪɟ |
||
ɬɹɠɟɫɬɢ Ʉ ɨɛɴɟɦɚ ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ |
||
ɫɭɞɧɨɦ. |
|
|
Ɇɨɞɭɥɶ Rɫɬ ɪɚɜɟɧ ɜɟɫɭ ɨɛɴɟɦɚ V |
||
ɜɨɞɵ, |
ɜɵɬɟɫɧɟɧɧɨɣ |
ɫɭɞɧɨɦ, |
ɬ.ɟ. Rɫɬ |
ϑ V ϑ S d , |
ɫɥɟɞɨɜɚɬɟɥɶɧɨ, |
ɭɫɥɨɜɢɟ |
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɢɦɟɟɬ |
|
ɜɢɞ |
|
|
|
|
|
|
|
|
P ϑ S d 0 . |
|
|
|
(7) |
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ |
|
|
|
|
||||||
|
|
ɩɪɢ t |
0: |
x |
0, |
x v0 . |
|
|
|
(8) |
ɂɡ-ɡɚ ɧɚɥɢɱɢɹ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ v0 ɫɭɞɧɨ ɧɚɱɢɧɚɟɬ ɞɜɢɝɚɬɶɫɹ |
||||||||||
ɜɟɪɬɢɤɚɥɶɧɨ |
ɜɧɢɡ. |
Ɉɛɴɟɦ |
ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ |
ɫɭɞɧɨɦ, |
ɪɚɜɟɧ |
|||||
S(d x).Ɂɧɚɱɢɬ, ɩɪɨɟɤɰɢɹ ɧɚ ɨɫɶ ɯ ɧɨɪɦɚɥɶɧɨɣ ɪɟɚɤɰɢɢ R ɪɚɜɧɚ |
|
|||||||||
|
|
|
Rx |
ϑ S (d x) . |
|
|
|
(9) |
||
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɜ |
||||||||||
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ |
|
|
mx |
Px Rx . |
|
|
|
|
||
Ɍɚɤ ɤɚɤ Ɋ=Ɋɯ, ɢɫɩɨɥɶɡɭɹ ɭɪɚɜɧɟɧɢɹ (1) ɢ (3), ɩɨɥɭɱɢɦ |
|
P |
x |
ϑ Sx . |
||||||
|
|
|||||||||
|
|
|
|
|
|
|
|
g |
|
|
Ɂɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɜ ɤɚɧɨɧɢɱɟɫɤɨɦ ɜɢɞɟ: |
||||||||||
|
|
|
x k 2 x |
0 , |
|
|
|
(10) |
||
ɝɞɟ |
gϑ S |
k – |
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ. |
|
|
|
|
|||
P |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
14
Ɂɚɩɢɲɟɦ ɢɫɤɨɦɨɟ ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4) ɜ ɜɢɞɟ |
|
|||||||
|
x |
asin(kt |
) , |
|
|
|
(11) |
|
|
2 |
|
|
|
|
|
kx0 |
|
ɝɞɟ a |
x02 x02 – ɚɦɩɥɢɬɭɞɚɤɨɥɟɛɚɧɢɣ, |
|
arctg |
– ɧɚɱɚɥɶɧɚɹɮɚɡɚ. |
||||
|
x0 |
|||||||
|
k |
|
|
|
|
|
|
|
ɂɫɩɨɥɶɡɭɹɧɚɱɚɥɶɧɵɟɭɫɥɨɜɢɹ(2), ɧɚɣɞɟɦɚɦɩɥɢɬɭɞɭɢɧɚɱɚɥɶɧɭɸɮɚɡɭ: |
||||||||
|
v0 |
v |
P |
|
|
|
|
|
|
a |
gSϑ |
, |
|
0. |
|
(12) |
|
|
k |
0 |
|
|
||||
ɂɫɩɨɥɶɡɭɹ (6),(7) ɢ (5), ɨɤɨɧɱɚɬɟɥɶɧɨ ɩɨɥɭɱɢɦ |
|
|||||||
|
|
P |
§ |
gSϑ |
|
· |
|
|
|
x v0 |
|
¨ |
|
t |
¸ |
|
(13) |
|
gSϑ |
sin¨ |
P |
¸. |
|
|||
|
|
© |
|
¹ |
|
|
||
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɪɚɜɟɧ |
T |
2Σ |
2Σ |
|
P . |
|
||
|
|
|
k |
|
|
gsϑ |
|
|
§4. Ɂɚɬɭɯɚɸɳɢɟ ɤɨɥɟɛɚɧɢɹ
Ɂɚɞɚɱɚʋ1. Ƚɪɭɡ ɜɟɫɨɦ Ɋ = 98 H, ɩɨɞɜɟɲɟɧɧɵɣ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ, ɞɜɢɠɟɬɫɹɜɠɢɞɤɨɫɬɢ. Ʉɨɷɮɮɢɰɢɟɧɬɠɟɫɬɤɨɫɬɢɩɪɭɠɢɧɵɫ=10 ɇ/ɫɦ. ɋɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɟɧɢɸ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɩɟɪɜɨɣ ɫɬɟɩɟɧɢ ɫɤɨɪɨɫɬɢ ɝɪɭɡɚ: R=ȕȣ, ɝɞɟ ȕ=1,6 ɇɫ/ɫɦ. ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ, ɟɫɥɢ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬɝɪɭɡɛɵɥɫɦɟɳɟɧ ɢɡɩɨɥɨɠɟɧɢɹɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹɜɧɢɡ ɧɚ 4 ɫɦ ɢɟɦɭɛɵɥɚɫɨɨɛɳɟɧɚɜɧɢɡɧɚɱɚɥɶɧɚɹɫɤɨɪɨɫɬɶȣ0=4 ɫɦ/ɫ.
Ɋɟɲɟɧɢɟ.
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɩɨ ɩɪɭɠɢɧɟ, ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜɨɡɶɦɟɦ ɜ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ.
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ:
t 0, x |
x0 |
4 ɫɦ, |
x |
x0 |
4 ɫɦ/ c. |
ɂɡɨɛɪɚɡɢɦ ɝɪɭɡ ɜ ɩɨɥɨɠɟɧɢɢ, ɤɨɝɞɚ ɩɪɭɠɢɧɚ ɩɨɥɭɱɢɬ ɭɞɥɢɧɟɧɢɟ
D = d + x.
ɋɢɥɚ ɭɩɪɭɝɨɫɬɢ ɩɪɭɠɢɧɵ, ɧɚɩɪɚɜɥɟɧɧɚɹ ɜɟɪɬɢɤɚɥɶɧɨ ɜɜɟɪɯ, ɪɚɜɧɚ
Fx c(d x) . |
(1) |
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ: mx P Fx Rx .
ɉɨɞɫɬɚɜɢɦ ɜ ɭɪɚɜɧɟɧɢɟ ɡɧɚɱɟɧɢɹ Fx ɢ Rx:
15
P |
x P cd cx ΕΞx . |
(2) |
|
||
g |
|
|
ȼ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɤ ɝɪɭɡɭ ɩɪɢɥɨɠɟɧɵ ɫɢɥɵ: Ɋ – ɟɝɨ ɜɟɫ, ɧɚɩɪɚɜɥɟɧɧɵɣ ɩɨ ɜɟɪɬɢɤɚɥɢ ɜɧɢɡ, ɫɬɚɬɢɱɟɫɤɚɹ ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ Fɫɬ=cd, ɧɚɩɪɚɜɥɟɧɧɚɹ ɜɜɟɪɯ. Ɍɚɤ ɤɚɤ ɝɪɭɡ ɧɚɯɨɞɢɬɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ, ɬɨ
|
|
|
P cd |
|
|
0. |
|
|
|
|
(3) |
|||
ɉɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ (2) ɜ ɜɢɞɟ |
|
|
|
|
|
|
||||||||
|
|
|
x 2nx k2 x 0, |
|
|
|
|
(4) |
||||||
ɝɞɟ Ξx |
x, k |
cg , n |
Εg |
|
, ɩɨɥɭɱɚɟɦ k |
= |
10 |
c-1, n = |
8 |
ɫ-1, ɬɚɤɢɦ |
||||
ɨɛɪɚɡɨɦ, n < k. |
P |
2P |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ɂɚɩɢɲɟɦ ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ (4): |
|
|
||||||||||||
|
Ο2 2nΟ k2 |
0, |
|
Ο |
|
n ρ n2 |
k2 |
n ρi k2 n2 . |
||||||
|
|
|
|
|
1,2 |
|
|
|
|
|
|
|
|
|
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɢɦɟɟɬ ɜɢɞ |
|
|
||||||||||||
|
x |
e nt (c1 cos( |
k2 n2 t) c2 sin( |
k2 n2 t)) . |
|
(5) |
||||||||
ɂɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ, ɩɨɥɭɱɚɟɦ ɩɨɫɬɨɹɧɧɵɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ |
||||||||||||||
|
|
|
c1 |
|
x0 , |
|
c |
x0 |
nx0 |
. |
|
|
||
|
|
|
|
|
2 |
2 n 2 |
|
|
||||||
|
|
|
|
|
|
|
|
|
k |
|
|
|
||
ɉɪɟɨɛɪɚɡɭɟɦ ɩɨɥɭɱɟɧɧɨɟ ɭɪɚɜɧɟɧɢɟ, ɨɩɪɟɞɟɥɹɹ |
|
|
|
|||||||||||
|
|
x0 |
Asin |
|
, |
x0 |
nx0 |
Acos . |
|
(6) |
||||
Ɍɟɩɟɪɶ ɭɪɚɜɧɟɧɢɟ ɩɪɢɦɟɬ ɜɢɞ |
|
k 2 n2 |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
||||||
|
|
x |
Ae nt sin( |
|
|
k 2 n2 t |
). |
|
|
(7) |
||||
Ⱦɜɢɠɟɧɢɟ ɝɪɭɡɚ ɹɜɥɹɟɬɫɹ ɡɚɬɭɯɚɸɳɢɦ (ɬ.ɤ. ɩɪɢ t x |
0) ɫ ɤɪɭɝɨɜɨɣ |
|||||||||||||
ɱɚɫɬɨɬɨɣ |
kc |
k 2 n2 |
. ɉɨɞɫɬɚɜɢɜ ɱɢɫɥɟɧɧɵɟ |
ɡɧɚɱɟɧɢɹ |
ɜ |
ɮɨɪɦɭɥɵ, |
||||||||
ɧɚɯɨɞɢɦ Ⱥ=7,2 ɫɦ, Į=0,59 ɪɚɞ, kc=6 ɫ-1. |
|
|
|
|
|
|||||||||
ɂɬɚɤ, ɝɪɭɡ ɫɨɜɟɪɲɚɟɬ ɡɚɬɭɯɚɸɳɢɟ ɤɨɥɟɛɚɧɢɹ ɩɨ ɡɚɤɨɧɭ |
|
|
||||||||||||
|
|
x |
7,2e 8t sin(6t 0,59) ɫɦ. |
|
|
(8) |
||||||||
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɪɚɜɟɧ Tc |
2Σ |
1,05 ɫ. |
|
|
|
|
||||||||
kc |
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɂɚɞɚɱɚ ʋ 2. Ɋɟɲɢɬɶ ɩɪɟɞɵɞɭɳɭɸ ɡɚɞɚɱɭ ɜ ɩɪɟɞɩɨɥɨɠɟɧɢɢ, ɱɬɨ ɫɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɟɧɢɸ ɪɚɜɧɚ R=ȕȣ, ɝɞɟ ȕ=5,2 Hɫ/ɫɦ. ȼ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɝɪɭɡ ɛɵɥ ɫɦɟɳɟɧ ɢɡ ɩɨɥɨɠɟɧɢɹ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɧɚ 4 ɫɦ, ɢ ɟɦɭ ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɜɟɪɯ ɧɚɱɚɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ȣ0=240 ɫɦ/ɫ.
Ɋɟɲɟɧɢɟ. ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɩɨ ɩɪɭɠɢɧɟ, ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜɨɡɶɦɟɦ ɜ ɩɨɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ
16
ɧɚɱɚɥɶɧɵɟ |
ɭɫɥɨɜɢɹ |
ɞɜɢɠɟɧɢɹ |
ɝɪɭɡɚ |
ɢɦɟɸɬ |
ɜɢɞ |
|||||
ɩɪɢ t |
↑ |
x |
x0 |
4 ɫɦ |
. |
|
|
|
|
|
0 → |
x0 |
240 ɫɦ/ |
|
|
|
|
|
|||
|
↓ x |
ɫ |
|
|
|
|
|
|||
ɋɥɟɞɭɹ ɪɟɲɟɧɢɸ ɩɪɟɞɵɞɭɳɟɣ ɡɚɞɚɱɢ, ɩɨɥɭɱɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ |
||||||||||
ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ |
|
|
|
|
|
|
||||
x 2nx kx |
0, ɝɞɟ Ξx |
x, |
k |
cg , |
n Εg . |
|
|
|||
|
|
|
|
|
|
|
P |
2P |
|
|
ɉɨɞɫɬɚɜɢɜ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ, ɩɨɥɭɱɚɟɦ k=10 c-1, n=26 ɫ-1, ɬɚɤɢɦ |
||||||||||
ɨɛɪɚɡɨɦ, n>k (ɫɥɭɱɚɣ ɛɨɥɶɲɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ). |
|
|
||||||||
Ɂɚɩɢɲɟɦ |
ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ |
ɭɪɚɜɧɟɧɢɟ |
Ο2 2nΟ k2 |
0, ɟɝɨ |
ɤɨɪɧɢ |
|||||
ɪɚɜɧɵ Ο1 |
n |
n2 |
k 2 , Ο2 n |
k 2 |
n2 . |
|
|
|
||
Ɍɚɤ ɤɚɤ n > k, ɬɨ ɤɨɪɧɢ Ȝ1 ɢ Ȝ2 ɹɜɥɹɸɬɫɹ ɜɟɳɟɫɬɜɟɧɧɵɦɢ ɢ |
||||||||||
ɨɬɪɢɰɚɬɟɥɶɧɵɦɢ. ɍɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɢɦɟɟɬ ɜɢɞ |
|
|
||||||||
|
|
|
x |
ɫ1eΟ1t c2eΟ2t . |
|
|
(9) |
|||
ɂɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ, ɧɚɣɞɟɦ ɩɨɫɬɨɹɧɧɵɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ:
c |
|
Ο2 x0 x0 |
, c |
2 |
Ο1x0 x0 |
. |
|||
|
Ο Ο |
|
|||||||
1 |
|
Ο |
Ο |
2 |
|
2 |
|||
|
1 |
|
|
|
1 |
|
|||
ɉɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ (1) ɫ ɭɱɟɬɨɦ ɧɚɣɞɟɧɧɵɯ ɡɧɚɱɟɧɢɣ: |
|||||||||
x |
1 |
>(Ο x |
0 |
x |
0 |
)eΟ2t |
(Ο |
2 |
x |
0 |
x |
0 |
)e |
Ο1t |
. |
|
|
(10) |
|
|
|
|
|||||||||||||||||
|
Ο1 Ο2 |
1 |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ȼɨɫɩɨɥɶɡɨɜɚɜɲɢɫɶ ɡɧɚɱɟɧɢɹɦɢ Ȝ1 ɢ |
Ȝ2 |
ɢ |
ɝɢɩɟɪɛɨɥɢɱɟɫɤɢɦɢ |
||||||||||||||||
ɮɭɧɤɰɢɹɦɢ, ɡɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ (2) ɜ ɜɢɞɟ |
|
|
|
|
|
|
|||||||||||||
x |
e nt |
>(x0 |
nx0 )sh |
n2 k 2 |
x0 |
n2 |
k 2 ch |
n2 k 2 t . |
(11) |
||||||||||
|
n2 k 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ⱦɜɢɠɟɧɢɟ ɝɪɭɡɚ ɹɜɥɹɟɬɫɹ ɚɩɟɪɢɨɞɢɱɟɫɤɢɦ ɢ ɩɪɢɬɨɦ ɡɚɬɭɯɚɸɳɢɦ, ɬ. ɤ. ɩɪɢ t x 0.
ɉɨɞɫɬɚɜɢɦ ɜ (3) ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ,
ɩɨɥɭɱɢɦ x |
|
1 |
e |
26t |
(29e |
24t |
5e |
24t |
) |
|||
6 |
|
|
|
|||||||||
|
1 |
|
|
|
|
|
|
|
|
|||
ɢɥɢ x |
e |
26t |
(12ch24t 17sh24t) |
|
||||||||
3 |
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
ȼɵɹɫɧɢɦ, ɩɟɪɟɯɨɞɢɬ ɥɢ ɝɪɭɡ ɩɨɥɨɠɟɧɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ:
1 e 26t (29e 24t 5e24t ) 0 . ȼɵɱɢɫɥɹɹ, ɩɨɥɭɱɚɟɦ t1=0,037 ɫ, t2= .
6
17
Ɂɧɚɱɟɧɢɟ t1 ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɟɪɟɯɨɞɭ ɝɪɭɡɚ ɱɟɪɟɡ ɩɨɥɨɠɟɧɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, t2 ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɡɚɬɭɯɚɧɢɸ ɞɜɢɠɟɧɢɹ. ɂɬɚɤ, ɜ ɞɚɧɧɨɣ ɡɚɞɚɱɟ ɝɪɭɡ ɩɪɨɯɨɞɢɬ ɨɞɢɧ ɪɚɡ ɱɟɪɟɡ ɩɨɥɨɠɟɧɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɢ ɡɚɬɟɦ ɚɫɢɦɩɬɨɬɢɱɟɫɤɢ ɤ ɧɟɦɭ ɩɪɢɛɥɢɠɚɟɬɫɹ ɫ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ.
§5. ȼɵɧɭɠɞɟɧɧɵɟ ɤɨɥɟɛɚɧɢɹ
Ɂɚɞɚɱɚ ʋ 1. ɇɚ |
ɪɢɫɭɧɤɟ |
||
ɢɡɨɛɪɚɠɟɧɚ ɫɯɟɦɚ ɩɪɢɛɨɪɚ ɞɥɹ |
|||
ɢɡɦɟɪɟɧɢɹ ɞɚɜɥɟɧɢɹ. Ʉ ɩɨɥɡɭɧɭ Ⱥ |
|||
ɜɟɫɨɦ Ɋ=196 Ƚ ɩɪɢɤɪɟɩɥɟɧɚ |
|||
ɫɬɪɟɥɤɚ |
ȼ, |
ɨɬɦɟɱɚɸɳɚɹ |
|
ɩɨɤɚɡɚɧɢɹ |
ɧɚ |
ɧɟɩɨɞɜɢɠɧɨɣ |
|
ɲɤɚɥɟ |
ɋ. |
ɉɨɥɡɭɧ |
Ⱥ, |
ɩɪɢɤɪɟɩɥɟɧɧɵɣ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ |
|
|
|
|
||||
D, |
ɩɟɪɟɦɟɳɚɟɬɫɹ |
ɩɨ |
Ɉɩɪɟɞɟɥɢɬɶ: |
|
||||
ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ |
ɢɞɟɚɥɶɧɨ |
|
||||||
1) |
ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɫɬɪɟɥɤɢ ȼ |
|||||||
ɝɥɚɞɤɨɣ |
ɩɥɨɫɤɨɫɬɢ. Ʉ |
ɩɨɥɡɭɧɭ |
||||||
|
ɜ ɫɥɭɱɚɟ |
ɨɬɫɭɬɫɬɜɢɹ |
ɫɢɥɵ |
|||||
ɩɪɢɥɨɠɟɧɚ ɝɨɪɢɡɨɧɬɚɥɶɧɚɹ ɫɢɥɚ |
|
|||||||
|
ɫɨɩɪɨɬɢɜɥɟɧɢɹ; |
|
||||||
S = H·sin(pt), |
ɝɞɟ ɇ = 1,6 ɤȽ, |
|
|
|||||
2) |
ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɫɬɪɟɥɤɢ ȼ |
|||||||
ɪ = 60 |
ɫ-1. |
Ʉɨɷɮɮɢɰɢɟɧɬ |
||||||
ɭɩɪɭɝɨɫɬɢ ɪɚɜɟɧ ɫ = 2 |
ɤȽ/ɫɦ. ȼ |
|
ɩɪɢ |
ɧɚɥɢɱɢɢ |
ɫɢɥɵ |
|||
|
ɫɨɩɪɨɬɢɜɥɟɧɢɹ, |
|
||||||
ɧɚɱɚɥɶɧɵɣ |
ɦɨɦɟɧɬ |
ɩɨɥɡɭɧ |
|
|
||||
|
ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɣ |
ɩɟɪɜɨɣ |
||||||
ɧɚɯɨɞɢɥɫɹ ɜ ɩɨɤɨɟ, ɜ ɩɨɥɨɠɟɧɢɢ |
|
|||||||
|
ɫɬɟɩɟɧɢ |
ɫɤɨɪɨɫɬɢ ɩɨɥɡɭɧɚ |
||||||
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. |
|
|||||||
|
R=ȕȣ, ɝɞɟ ȕ=25,6 Ƚ ɫ/ɫɦ. |
|
||||||
|
|
|
|
|
|
|||
Ɋɟɲɟɧɢɟ. ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɩɨ ɝɨɪɢɡɨɧɬɚɥɢ ɜɩɪɚɜɨ, ɜɡɹɜ ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ ɩɨɥɡɭɧɚ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɦ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ ɩɪɭɠɢɧɟ.
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɩɨɥɡɭɧɚ: ɩɪɢ t 0 x 0, x 0 . ɂɡɨɛɪɚɡɢɦ ɩɨɥɡɭɧ ɫɦɟɳɟɧɧɵɦ ɢɡ ɩɨɥɨɠɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɜɩɪɚɜɨ ɧɚ ɯ.
ɉɪɢ ɷɬɨɦ ɩɪɭɠɢɧɚ ɪɚɫɬɹɧɟɬɫɹ ɧɚ D = ɯ. Ʉ ɩɨɥɡɭɧɭ ɩɪɢɥɨɠɟɧɵ ɫɢɥɵ: Ɋ – ɜɟɫ ɩɨɥɡɭɧɚ, N – ɧɨɪɦɚɥɶɧɚɹ ɪɟɚɤɰɢɹ, ɫɢɥɚ S, ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ ɪɚɫɬɹɧɭɬɨɣ ɩɪɭɠɢɧɵ F.
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɩɨɥɡɭɧɚ ɜ ɩɪɨɟɤɰɢɢ ɧɚ
ɯ: |
|
|
|
|
Hg |
|
|
cg |
|
|
mx |
Sx Fx |
ɢɥɢ |
x |
|
sin pt |
x , ɨɬɤɭɞɚ |
|
|||
|
|
|
|
|||||||
|
|
|
|
|
P |
|
P |
|
||
|
|
|
|
x k 2 x |
k sin pt, |
(1) |
||||
ɝɞɟ k |
cg , |
h |
hg |
. ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ k=100 ɫ-1, h=8000 ɫɦ/ɫ-2. |
|
|||||
|
P |
|
P |
|
|
|
|
|
|
|
Ɋɟɲɚɹ (1), ɧɚɣɞɟɦ ɨɛɳɟɟ ɪɟɲɟɧɢɟ ɨɞɧɨɪɨɞɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɜ ɜɢɞɟ
18
|
|
|
|
|
|
|
|
x1 |
|
|
c1 cos(kt) c2 sin(kt). |
|
|
|
(2) |
|||||||||||||||
ɑɚɫɬɧɨɟ |
ɪɟɲɟɧɢɟ |
|
|
ɭɪɚɜɧɟɧɢɹ |
|
(1) |
|
ɩɪɢɦɟɦ |
ɜ |
ɜɢɞɟ |
||||||||||||||||||||
x2 Asin(pt) Bcos(pt), ɬɨɝɞɚ |
|
h |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
x2 |
|
|
|
|
|
|
|
|
sin( pt) . |
|
|
|
|
|
(3) |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
k |
2 |
p |
2 |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ɂɚɩɢɲɟɦ ɨɛɳɟɟ ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (1), ɫɥɨɠɢɜ (2) ɢ (3): |
|
|
||||||||||||||||||||||||||||
|
|
|
x |
|
|
|
c1 cos(kt) c2 sin(kt) |
|
|
|
|
h |
|
sin( pt) . |
|
(4) |
||||||||||||||
|
|
|
|
|
|
|
k |
2 |
p |
2 |
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
ɂɫɩɨɥɶɡɭɹ |
ɧɚɱɚɥɶɧɵɟ |
|
|
|
|
ɭɫɥɨɜɢɹ, |
|
|
ɨɩɪɟɞɟɥɢɦ |
ɩɨɫɬɨɹɧɧɵɟ |
||||||||||||||||||||
ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ: |
|
p |
|
|
|
|
h |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c1 0, c2 |
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
k |
k |
2 |
p |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
ɂɬɚɤ, ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɟ ɫɬɪɟɥɤɢ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
x |
|
p |
|
|
h |
|
|
sin(kt) |
|
|
|
h |
|
sin( pt) . |
|
(5) |
||||||||||||||
k k |
2 |
|
2 |
|
k |
2 |
p |
2 |
|
|||||||||||||||||||||
|
|
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
ɉɨɞɫɬɚɜɢɜ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ, ɩɨɥɭɱɢɦ |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
x ( 0,75sin(100t) 1,25sin(60t)) cɦ . |
|
(6) |
|||||||||||||||||||||||||
Ɋɟɲɢɦ ɷɬɭ ɡɚɞɚɱɭ ɫ ɭɱɟɬɨɦ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɟɧɢɸ. Ʉ ɫɢɥɚɦ, ɪɚɧɟɟ ɩɪɢɥɨɠɟɧɧɵɦ ɤ ɩɨɥɡɭɧɭ, ɞɨɛɚɜɥɹɟɬɫɹ ɫɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɟɧɢɸ R, ɧɚɩɪɚɜɥɟɧɧɚɹ ɜ ɫɬɨɪɨɧɭ, ɩɪɨɬɢɜɨɩɨɥɨɠɧɭɸ ɫɤɨɪɨɫɬɢ ɞɜɢɠɟɧɢɹ.
mx |
Sx Fx |
Rx ɢɥɢ x |
Hg |
sin pt |
cg |
x |
Εg |
x |
, ɨɬɤɭɞɚ |
|
|
|
|
||||||||
|
|
|
P |
|
P |
P |
|
|||
|
|
x 2nx k 2 x |
k sin pt, |
|
|
(7) |
||||
ɝɞɟ k |
cg , |
n Εg , h |
hg . ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ k = 100 ɫ-1, h = 80 ɫɦ ɫ-2, |
|||||||
|
P |
2P |
P |
|
|
|
|
|
|
|
n = 64 ɫ-1, ɪ = 60 ɫ-1. ɂɬɚɤ, n < k ɢ p < k.
k2 n2 76,8 |
a |
h |
0,8 Η |
arctg |
|
2np |
|
|
0,87 . |
(k2 p2 )2 4n2 p2 |
k |
2 |
2 |
|
|||||
|
|
|
|
p |
|
||||
Ⱥ ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɜɵɛɢɪɚɹ ɱɚɫɬɧɨɟ ɪɟɲɟɧɢɟ ɜ |
ɜɢɞɟ |
x2 |
asin(pt Η), |
||||||
ɩɨɥɭɱɢɦ |
e 64t (c1 cos76,8t c2 sin 76,8t) 0,8sin(60t 0,87). |
|
|||||||
x |
(8) |
||||||||
ɂɫɩɨɥɶɡɭɹ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ, ɨɩɪɟɞɟɥɢɦ ɩɨɫɬɨɹɧɧɵɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ: ɫ1 = 0,62; ɫ2 = 0,12. ɉɟɪɟɩɢɲɟɦ ɮɨɪɦɭɥɭ (9):
x e 64t (0,62cos76,8t 0,12sin 76,8t) 0,8sin(60t 0,87). |
(9) |
ȼɜɟɞɟɦ ɨɛɨɡɧɚɱɟɧɢɟ: 0,62=bsinĮ; 0,12=bcosĮ, ɩɨɥɭɱɢɦ b=0,63, Į=1,74.
ɂɬɚɤ, ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɩɨɥɡɭɧɚ Ⱥ ɢ ɫɬɪɟɥɤɢ ȼ ɢɦɟɟɬ ɜɢɞ:
x >0,63e 64t sin(76,8t 1,74) 0,8sin(60t 0,87) ɫɦ. |
(10) |
19
ɉɟɪɜɨɟ ɫɥɚɝɚɟɦɨɟ ɭɪɚɜɧɟɧɢɹ ɨɩɪɟɞɟɥɹɬ ɤɨɥɟɛɚɧɢɟ ɫɬɪɟɥɤɢ ɫ ɱɚɫɬɨɬɨɣ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ, ɤɨɬɨɪɵɟ ɛɵɫɬɪɨ ɡɚɬɭɯɚɸɬ ɛɥɚɝɨɞɚɪɹ ɧɚɥɢɱɢɸ ɦɧɨɠɢɬɟɥɹ e-64t. ȼɬɨɪɨɟ ɫɥɚɝɚɟɦɨɟ ɭɪɚɜɧɟɧɢɹ ɨɩɪɟɞɟɥɹɟɬ ɜɵɧɭɠɞɟɧɧɵɟ ɤɨɥɟɛɚɧɢɹ ɫɬɪɟɥɤɢ ȼ.
|
|
|
§6. Ɋɟɡɨɧɚɧɫ |
|
|
|
|
Ɂɚɞɚɱɚ ʋ |
1. |
Ɉɩɪɟɞɟɥɢɬɶ |
ȼ ɧɚɱɚɥɶɧɵɣ |
ɦɨɦɟɧɬ |
ɬɨɱɤɚ |
||
ɭɪɚɜɧɟɧɢɟ |
|
ɞɜɢɠɟɧɢɹ |
ɧɚɯɨɞɢɥɚɫɶ ɜ ɩɨɤɨɟ ɜ ɧɚɱɚɥɟ |
||||
ɦɚɬɟɪɢɚɥɶɧɨɣ |
ɬɨɱɤɢ Ɇ |
ɜɟɫɨɦ |
ɨɬɫɱɟɬɚ |
ɨɫɢ |
ɯ. |
ɋɢɥɨɣ |
|
Ɋ=196 Ƚ, ɞɜɢɠɭɳɟɣɫɹ ɜɞɨɥɶ ɨɫɢ ɯ |
ɫɨɩɪɨɬɢɜɥɟɧɢɹ |
ɞɜɢɠɟɧɢɸ |
|||||
ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɭɩɪɭɝɨɫɬɢ F |
ɩɪɟɧɟɛɪɟɱɶ. |
|
|
|
|||
ɢ ɜɨɡɦɭɳɚɸɳɟɣ ɫɢɥɵ S. ɉɪɨɟɤɰɢɢ |
|
|
|
|
|||
ɷɬɢɯ ɫɢɥ ɧɚ ɨɫɶ ɯ ɪɚɜɧɵ: Fx = –cx, |
|
|
|
|
|||
Sx = H·sin(pt), |
ɝɞɟ |
ɫ = 2 |
ɤȽ/ɫɦ, |
|
|
|
|
ɇ = 1,6 ɤȽ, ɪ = 101 ɫ-1.
Ɋɟɲɟɧɢɟ. Ɂɚɩɢɲɟɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɬɨɱɤɢ Ɇ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ mx |
Fx |
Sx |
ɢɥɢ mx |
cx H sin pt |
||||
|
|
|
x k 2 x |
hsin pt , |
(1) |
|||
ɝɞɟ k2 |
c |
10000 ɫ 1, |
p |
101ɫ 1, h |
|
H |
8000 ɫɦ/ ɫ2.. |
|
|
|
|
||||||
|
m |
|
|
|
|
m |
||
ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɤɨɥɟɛɚɧɢɹ ɩɪɨɢɫɯɨɞɹɬ ɜɛɥɢɡɢ ɪɟɡɨɧɚɧɫɚ (ɪɟɡɨɧɚɧɫ ɢɦɟɟɬ ɦɟɫɬɨ ɩɪɢ p=k) ɜ ɡɨɧɟ ɜɵɧɭɠɞɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɛɨɥɶɲɨɣ ɱɚɫɬɨɬɵ
(p>k). |
|
|
|
|
|
|
|
|
|
|
|||
Ɂɧɚɱɢɬ, ɪɟɲɟɧɢɟ ɩɪɢɧɢɦɚɟɬ ɜɢɞ |
|
|
|
|
|
|
|||||||
x |
p |
|
|
|
h |
|
sin kt |
|
|
h |
|
sin pt . |
(2) |
k k |
2 |
p |
2 |
k |
2 |
p |
2 |
||||||
|
|
|
|
|
|
|
|
||||||
Ʉɚɤ ɫɥɟɞɭɟɬ ɢɡ ɭɪɚɜɧɟɧɢɹ, ɢɫɤɨɦɨɟ ɞɜɢɠɟɧɢɟ ɹɜɥɹɟɬɫɹ ɪɟɡɭɥɶɬɚɬɨɦ ɧɚɥɨɠɟɧɢɹ ɞɜɭɯ ɝɚɪɦɨɧɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ, ɩɪɨɢɫɯɨɞɹɳɢɯ ɫ ɩɨɱɬɢ ɪɚɜɧɵɦɢ ɤɪɭɝɨɜɵɦɢ ɱɚɫɬɨɬɚɦɢ ɫɜɨɛɨɞɧɵɯ k ɢ ɜɵɧɭɠɞɟɧɧɵɯ ɪ ɤɨɥɟɛɚɧɢɣ. Ɍ. ɤ. k§p, ɬɨ ɛɭɞɟɦ ɫɱɢɬɚɬɶ
|
|
|
|
p |
| 1, p k | 2k | 2p. |
(3) |
|
|
|
|
|
||
|
|
|
|
k |
|
|
|
ɂɫɩɨɥɶɡɭɹ |
ɩɟɪɜɨɟ ɫɨɨɬɧɨɲɟɧɢɟ (3), ɩɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ |
(2), |
|||
x | |
h |
|
(sin pt sin kt) . |
|
||
|
|
|
||||
|
(k p)(k p) |
|
||||
|
ɂɫɩɨɥɶɡɭɹ ɜɬɨɪɨɟ ɫɨɨɬɧɨɲɟɧɢɟ (3), ɩɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ: |
|
||||
|
h |
|
|
x |
|
(sin pt sin kt) . |
(4) |
|
|||
|
2k(k p) |
|
|
ɉɪɟɨɛɪɚɡɨɜɚɜ ɜɵɪɚɠɟɧɢɟ, ɩɨɥɭɱɢɦ |
|
||
|
|
x a(t)cos pt , |
(5) |
20
