Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НАУЧНОЕ ПОЗНАНИЕ.doc
Скачиваний:
120
Добавлен:
20.05.2015
Размер:
275.46 Кб
Скачать

9. Основными подходами к проблеме развития научного знания являются …

 кумулятивистский

 антикумулятивистский

 

 метафизический

 

 теоретический

Решение: Основными подходами к проблеме развития научного знания являются кумулятивистский и антикумулятивистский. Согласно кумулятивистскому взгляду, развитие науки представляется поступательным, последовательным возрастанием твердо установленных, то есть доказанных, эмпирически обоснованных истин.

Напротив, антикумулятивизм утверждает  принцип несоизмеримости научных теорий и идеализирует моменты cкачкообразности в перехода от старых концепций к новым.

НАУКА И ТЕХНИКА

Понятие «техника» многозначно. Оно происходит от греческого слова «технэ», которое означало умение, мастерство, искусство. Сейчас термин «техника» используется, в основном, в двух смыслах: 1) как общее название технических устройств, применяемых в разных сферах деятельности; 2) как обозначение совокупности приемов действия, используемых в деятельности. Это может быть техника письма, рисования, техника выполнения физических упражнений и т.д.

Применение и изготовление технических средств – специфический признак человеческой деятельности. Американский экономист и общественный деятель Б.Франклин (1706-1790) определял человека как животное, изготовляющее орудия труда. Орудия труда – первые технические средства, которые использовал человек в борьбе с природой.

Если животное имеет лишь один путь в борьбе за существование – совершенствование своих естественных органов жизнедеятельности, то человек получает возможность создавать и совершенствовать также органы искусственные. Животное находится в непосредственном контакте с природой. Человек же помещает между собой и природой технику (точнее, техническое средство труда). Техника является не только орудием воздействия на природу, но и средством его защиты от негативных природных воздействий.

Техника выполняет те функции, которые прежде выполняли естественные органы труда человека. На заре человеческой истории люди вынуждены были пользоваться зубами там, где впоследствии применялся нож; кулаком там, где затем стал употребляться молот, палка; пальцами рук вместо щипцов и т.д.

Техника развивалась путем моделирования естественных органов человека. С помощью технических средств воспроизводится не структура (устройство) естественных органов, а функция. Ткацкий станок воспроизводит функцию ткача, автомобильный и железнодорожный транспорт воспроизводит функцию передвижения и т.д.

Принцип функционального моделирования лежит в основе развития технических средств.

Еще один важный принцип – принцип дополнения. Он выражается в том, что не только техника дополняет и компенсирует несовершенство человеческих органов как орудий воздействия на природу, но и сам человек в технической системе является в определенном смысле ее дополнением. Человек без орудий производства бессилен, орудия производства без человека мертвы.

Понятие «технология»  одно из самых многозначных, характеризующих сферу создания чего-либо и рефлексии по этому поводу. Под технологией прежде всего понимается: 1) техника (отождествление с техникой); 2) описание последовательности трудовых операций, требуемых для превращения предмета труда в продукт, и сам процесс, соответствующий описанной методике; 3) сфера деятельности человека наряду с совокупностью явлений, обеспечивающих ее; 4) общая характеристика деятельности, типичной для определенного социума; 5) особый тип мироотношения, присущий индустриальной и постиндустриальной эпохам.

Для производственной сферы характерно разделение на антропоморфные и неантропоморфные технологии. Антропоморфные воспроизводят действия человека, вооруженного инструментами. Неантропоморфные основаны на взаимодействии природных процессов (физических, химических, биологических). В ходе их протекания превращение сырого материала в продукцию осуществляется как бы естественно, аналогично процессам природы. Те антропоморфные технологии, в которых достигается максимальная простота отдельных операций (исключая потребность в высококвалифицированном труде и использовании неантропоморфных технологий) получили название «высоких технологий».

Различают весьма разнообразные технологии: информационные (совокупность методов сбора, хранения и переработки информации), педагогические (совокупность методов обучения), биотехнологии (совокупность приемов, связанных с использованием клеточных и тканевых культур, размножением микроорганизмов и ферментацией, генной инженерией) и многие другие. Наиболее общая классификация технологий, предложенная Г.С. Гудожником, предполагает подразделение всех их на интенсивные, экстенсивные и экстенсивно-интенсивные.

Современную историческую эпоху нередко называют технологической: ее отличает исключительно высокая практическая активность населения планеты. В силу того, что ныне технология открывает перед человеком многообразные, в известном смысле неограниченные возможности, он способен не только желать того, что еще недавно казалось фантастикой, но и находить средства для осуществления своих желаний. Обладание технологией и использование ее является одной из важнейших отличительных черт современной эпохи. В нынешних условиях технология становится своеобразным типом отношения человека к миру, включающим деятельные и рефлексивные составляющие. С этих позиций технология выступает и как специфический вид деятельности, и как осознание человеком самого себя через эту деятельность: своих возможностей и способностей.

Не потеряло своего значения и использование понятия технологии для описания сферы деятельности человека и совокупности факторов, обеспечивающих ее. К тому же, не следует забывать, что одним из проявлений свойств трудовой деятельности выступает технологичность.

Трудовая деятельность человека может включать в себя пять функций: транспортную, технологическую, энергетическую, контрольно-регулирующую и принятия решения. На ранних стадиях развития общества все пять указанных функций выполнял человек. Силой собственных мышц он приводил в действие простые орудия и, осуществляя контроль за процессом, целесообразно изменял предмет труда в соответствии с ранее обдуманным назначением. Технический прогресс нашел свое выражение в последовательной передаче трудовых функций человека орудиям труда и, следовательно, в преобразовании функций трудовой деятельности человека в функции технических средств.

Первой функцией, для выполнения которой были созданы технические средства, была функция по подъему и перемещению грузов. Ранние механические устройства (рычаг, каток и др.) только помогали человеку в выполнении транспортной функции. Но затем были изобретены транспортные средства, которые позволили заменить людей в выполнении этих операций. В первой повозке, движимой прирученными животными, человек освобождался от выполнения транспортной и энергетической функций. С подъемно-транспортными средствами ассоциировалось понятие «машина»; «Машина есть сочетание соединенных вместе деревянных частей, обладающее огромными силами для передвижения тяжестей»,—писал знаменитый римский архитектор и инженер Витрувий (I в. до н. э.).

Первым механическим двигателем, заменившим человека в исполнении энергетической функции, было водяное колесо. Энергия потока воды с помощью водяного колеса превращалась в энергию вращения вала, которую использовали для привода различных устройств. Необходимость в замене мускульной энергии человека силами природы прежде всего возникла при осуществлении энергоемких процессов дробления материалов, подъема грузов, водоподъема, и именно здесь водяное колесо применялось достаточно часто. Энергетическую и транспортную функции, являющиеся простейшими функциями человека и животных, удалось заменить природными силами прежде всего.

Применение технологических машин послужило толчком к становлению и широкому распространению универсального парового двигателя. Это подметил К. Маркс. Он писал: «Только после того как орудия превратились из орудий человеческого организма в орудия механического аппарата, рабочей машины, только тогда и двигательная машина приобретает самостоятельную форму, совершенно свободную от тех ограничений, которые свойственны человеческой силе».

Техническая революция конца XVIII—начала XIX в., начавшаяся с создания технологических машин для текстильной промышленности, завершилась применением технологических машин в машиностроении, ибо «крупная промышленность должна была овладеть характерным для нее средством производства, самой машиной, и производить машины с помощью машин. Только тогда она создала адекватный ей технический базис и стала на свои собственные ноги».

Таким образом, к концу XVIII в. была создана система технических средств, которая значительно расширила технические возможности человека и повысила производительность его труда. Для выполнения энергетических, транспортных и технологических функций были созданы разнообразные и достаточно надежные технические устройства. Началось становление механизированных предприятий в разных отраслях промышленности.

Механизация трех трудовых функций человека означала снятие с производственного процесса ограничений, накладываемых человеком как непосредственным исполнителем ряда операций. Это позволило значительно интенсифицировать производственный процесс, который теперь строился по объективному принципу.

Из самого определения труда как целенаправленной деятельности человека следует, что функции наблюдения и контроля обязательны для любого производственного процесса, независимо от степени развития орудий труда. Выполняя трудовой процесс, человек следил непрерывно за ходом и результатом своих действий. Изменяя положение рук, ног, орудия, он непрерывно вносил необходимые коррективы в свои действия. Достижение определенного результата, идеально сконструированного человеком, предполагает наблюдение, контроль, коррекцию в течение всего процесса, от первой операции до последней. Только благодаря постоянному вниманию человека за ходом процесса в конце его появляется заранее запланированный продукт труда.

В механизированном производстве человек также не освобождается от функции регулирования и наблюдения за процессом. Контрольно-регулирующая функция человека не только не сокращается, а, наоборот, непрерывно расширяется и усложняется по мере увеличения числа единиц технологического и энергетического оборудования, с применением все более разнообразных и специализированных приемов и методов обработки. Освобождение человека от непосредственного выполнения контрольно-регулирующей функции в производственном процессе и создание технических, «независимо» от человека действующих систем контроля, является новым этапом в развитии технических средств. Замена труда человека в операциях контроля и регулирования действиями технических устройств составляет содержание автоматизации производственных процессов.

Создание производственных автоматов, выполняющих основные и вспомогательные движения в процессе всего рабочего цикла, без какой-либо помощи со стороны человека, означало передачу ряда функций (в том числе и регулирующей) техническим средствам. Система автоматических машин стала способна обеспечивать максимальную автоматизацию технологических процессов в различных отраслях хозяйства. Подлинное развитие автоматизации производственных процессов началось в середине XX в., когда в дополнение к механическим и электрическим устройствам были созданы разнообразные электронные регулирующие приборы и аппараты, свободные от инерции механических средств и обладающие исключительной точностью и гибкостью. Всевозможные средства автоматизации позволили создать полностью автоматизированные энергетические и технологически комплексы — автоматические гидростанции, автоматические линии обработки, заводы, автоматы по изготовлению различные изделий и т. д.

Широкое использование автоматизации стало совершенно необходимым на современном этапе развития техники.

С появлением электронных вычислительных машин начинается история технических средств, выполняющих наиболее сложные функции человека—функции принятия решения. Машине переданы отбор, систематизация, классификация информации.

Таким образом, основная закономерность в развитии технических средств заключается в создании человеком различных устройств, представляющих собою искусственную функциональную модель естественных органов человека. И как ни многообразны материалы, из которых сделаны технические средства, структура и форма отдельных элементов, типы связи и протекающие процессы, основное назначение орудий труда сводится к выполнению функций, ранее принадлежащих человеку, к замене человека в выполнении одной или совокупности трудовых функций.

Взаимоотношение науки и техники

В настоящее время развитие науки является одним из главных условий развития техники. Можно выделить три основных точки зрения на взаимоотношение науки и техники в обществе.

1) Утверждается определяющая роль науки, технику воспринимают как прикладную науку. Это модель взаимоотношения науки и техники, когда наука рассматривается как производство знания, а техника – как его применение. Такая модель – достаточно одностороннее отражение реального процесса из взаимодействия.

2) Взаимовлияние науки и техники, когда они рассматриваются как независимые, самостоятельные явления, взаимодействующие на определенных этапах своего развития. Утверждается, что познанием движет стремление к истине, тогда как техника развивается для решения практических проблем. Иногда техника использует научные результаты для своих целей, иногда наука использует технические устройства для решения своих проблем.

3) утверждает ведущую роль техники: наука развивалась под влиянием потребностей техники. Создание техники определялось нуждами производства, а наука возникает и развивается как попытка понять процесс функционирования технических устройств. Действительно, мельница, часы, насосы, паровой двигатель и т.д. создавались практиками, а соответствующие разделы науки возникают позднее и представляют собой теоретическое осмысление действия технических устройств. Например, сначала был изобретен паровой двигатель, потом возникает термодинамика. И таких примеров множество.

Чтобы разобраться в проблеме взаимоотношения науки и техники, надо рассмотреть их исторически, найти тот момент их развития, когда они составляли единое целое. Затем проследить процесс разделения, обособления и взаимодействия науки и техники.

Вспомним, что слово «техника» имеет два основных значения. Это: 1) то, что вне человека – технические средства, орудия труда и т.д., 2) то, что внутри – его навыки и умения.

И то, и другое – необходимые условия процесса труда, без которых труд невозможен. На разных этапах общественного развития их удельный вес различен. В докапиталистическом обществе преобладали простые орудия труда, поэтому конечный результат всецело зависел от множества неизвестных и неподконтрольных человеку причин. Человек еще в древности научился выплавлять металл, не имея адекватного представления о том, что при этом происходит, какие физические и химические процессы определяют получение конечного результата. Знание передавалось в форме рецепта: взять то– то…, сделать то – то. (Такая форма знания и сейчас представлена в любой книге по кулинарии).

Таким образом, главное знание человека докапиталистического общества – знание практическое, «как сделать». Это знание досталось от предков, оно священное и неприкосновенное. Ясно, что науки как знания об объективном природном процессе в традиционном обществе быть не может.

Как и почему возникает научное знание? Строго говоря, практическая деятельность человека всегда использует природные силы и причинно-следственные связи. Когда древний человек плавил металл, он использовал силы природы, ее законы. Но использовал – не значит понимал. Природные закономерности вначале не выделены из самой деятельности, скрыты, не представлены в чистом виде. Человек просто повторял ряд действий, унаследованных от предков. Среди них были рациональные и нерациональные, магические. Но это мы сейчас, с точки зрения нашего знания, можем определить, что рационально, а что нет: например, что приносить жертву при плавке металла не обязательно. Для древнего человека гарантией результата было точное воспроизведение действий предков, исполнение воли богов.

Каким же образом человек открывает объективный природный процесс? Если открывает, значит он скрыт, не виден. Но скрыт чем? Разве человек не видит природные явления и процессы? Человек видел как солнце всходит и заходит, как растет трава и деревья, он видел горы и реки и т.д. Видеть и понимать - вещи разные. Человек видит множество событий, явлений, процессов, связей, отношений. Какие события являются причиной, какие следствием, что необходимо, а что случайно?

Выход в том, чтобы заменить человека механизмом, техническим устройством. В механизме действие приводит всегда к однозначному результату. Результат зависит от устройства машины. Умение человека передается машине. Механизм можно исследовать, изучать, как он работает. В нем причинно-следственные связи наглядны и понятны, потому что созданы самим человеком. Ткацкий станок заменяет ткача. Действие человека заменяется действием механизма. Действие человека понять сложно. Оно непонятно от чего зависит. Один умеет рисовать и делает это легко и красиво, другой не умеет и никогда не сможет научиться. Ткать тоже надо долго учиться и не у каждого получается. Но если действие человека заменить машиной, тогда снимается зависимость результата от субъективных, т.е. неконтролируемых факторов. Причинно-следственные связи становятся воспроизводимыми и контролируемыми. Практика обретает устойчивую опору. Она больше не зависит от множества случайных факторов, от «неба».

Таким образом, техника дает возможность жестко связать действие и результат, устанавливает воспроизводимую и контролируемую причинно-следственную связь. Эти причинно-следственные связи, используемые в механических устройствах, изучаются наукой механикой. В механизме они наглядны и понятны, в природе скрыты. Чтобы понять действие природы, понадобился механизм. В дальнейшем познание развивается именно таким способом. В технике моделируются связи природы – наука их исследует и описывает в теориях.

Мы проследили следующую закономерность: действие человека в историческом процессе заменяется действием механического устройства, механическое устройство рождает науку механику – первую из естественных наук. Здесь уже есть все, что необходимо любой науке: приборы для экспериментов, которые отделяют устойчивые причинно-следственные связи от случайных и теория для описания этих связей. Наука обретает прочную опору. Теперь знание можно производить как ткани на ткацких станках -–в массовых количествах.

Все сказанное позволяет сделать вывод: наука как знание о реальных связях в природе, о закономерностях, проявляющихся в природных процессах, возникает тогда, когда ученые обращаются к исследованию технических устройств.

Таким образом, современная наука возникает как попытка понять действие технических устройств. Она исследует те природные законы, на основе которых работает техника. Позднее в науке происходит разделение на науки технические, исследующие проблемы техники, и науки о природе, исследующие природные процессы.

Наука длительное время, до конца XIX века, шла вслед за техникой. Технику создавали практики-изобретатели. В конце XIX века ситуация изменяется. Целые отрасли промышленности создаются на основе открытий науки: электротехническая, химическая, различные виды машиностроения и т.д.

В настоящее время создание новых видов технических устройств не может не опираться на научные исследования и разработки. В науке есть отрасли, непосредственно связанные с разработкой новой техники, и отрасли ориентированные на фундаментальные исследования. В целом это единая сфера деятельности, обозначаемая в статистических справочниках как «Научные исследования и опытно-конструкторские разработки» (НИОКР).

Все сказанное позволяет сделать вывод о том, что взаимоотношения науки и техники изменялись в историческом процессе. В докапиталистическом обществе преобладали ручные орудия труда. Ученые не обращались к решению практических проблем. В период становления и развития капитализма производство начинает развиваться на технической основе. Создаются разнообразные машины и механизмы, заменяющие труд рабочего. Современная наука возникает из стремления понять работу механических устройств. В дальнейшем происходит обособление технических наук и наук о природе, но сохраняется их тесная взаимосвязь и взаимовлияние. Современная наука и техника также находятся в процессе постоянного взаимодействия. Технические проблемы стимулируют развитие науки, научные открытия, в свою очередь, становятся основой создания новых видов техники.

Научно-техническая революция,

ее технологические и социальные последствия

Научно-техническая революция (НТР) – понятие, используемое для обозначения тех качественных преобразований, которые произошли в науке и технике во второй половине ХХ века. Начало НТР относится к середине 40-х гг. ХХ в. В ходе ее завершается процесс превращения науки в непосредственную производительную силу. НТР изменяет условия, характер и содержание труда, структуру производительных сил, общественное разделение труда, отраслевую и профессиональную структуру общества, ведёт к быстрому росту производительности труда, оказывает воздействие на все стороны жизни общества, включая культуру, быт, психологию людей, взаимоотношение общества с природой.

Научно-техническая революция — длительный процесс, который имеет две главные предпосылки — научно-техническую и социальную. Важнейшую роль в подготовке НТР сыграли успехи естествознания в конце XIX – в начале ХХ вв., в результате которых произошёл коренной переворот во взглядах на материю и сложилась новая картина мира. Были открыты: электрон, явление радиоактивности, рентгеновские лучи, создана теория относительности и квантовая теория. Совершился прорыв науки в область микромира и больших скоростей.

На современном этапе своего развития научно-техническая революция характеризуется следующими основными чертами.

1). Превращением науки в непосредственную производительную силу в результате слияния воедино переворота в науке, технике и производстве, усиления взаимодействия между ними и сокращения сроков от рождения новой научной идеи до её производственного воплощения.

2). Новым этапом общественного разделения труда, связанным с превращением науки в ведущую сферу развития общества.

3).Качественным преобразованием всех элементов производительных сил — предмета труда, орудий производства и самого работника; возрастающей интенсификацией всего процесса производства благодаря его научной организации и рационализации, постоянному обновлению технологии, сбережению энергии, снижению материалоёмкости, капиталоёмкости и трудоёмкости продукции. Приобретаемое обществом новое знание позволяет сократить затраты на сырьё, оборудование и рабочую силу, многократно окупая расходы на научные исследования и технические разработки.

4) Изменением характера и содержания труда, возрастанием в нём роли творческих элементов; превращением процесса производства из простого процесса труда в научный процесс.

5). Возникновением на этой основе материально-технических предпосылок сокращения ручного труда и замены его механизированным. В дальнейшем происходит автоматизация производства на основе применения электронно-вычислительной техники.

6). Созданием новых источников энергии и искусственных материалов с заранее заданными свойствами.

7). Огромным повышением социального и экономического значения информационной деятельности, гигантским развитием средств массовой коммуникации.

8). Ростом уровня общего и специального образования и культуры населения.

9). Увеличением свободного времени.

10). Возрастанием взаимодействия наук, комплексного исследования сложных проблем, роли социальных наук.

11). Резким ускорением всех общественных процессов, дальнейшей интернационализацией всей человеческой деятельности в масштабе планеты, возникновением так называемых глобальных проблем.

Наряду с основными чертами НТР можно выделить определенные этапы ее развития и главные научно-технические и технологические направления, характерные для этих этапов.

Первый этап: 1940-50-е годы до 1970-х

1) Достижения в области атомной физики (осуществление цепной ядерной реакции, открывшей путь к созданию атомного оружия),

2) успехи молекулярной биологии (выразившиеся в раскрытии генетической роли нуклеиновых кислот, расшифровке молекулы ДНК и последующего ее биосинтеза),

3) появление кибернетики (установившей определенную аналогию между живыми организмами и некоторыми техническими устройствами, являющимися преобразователями информации)

Второй этап: конец 70-х годов ХХ столетия важнейшей характеристикой данного этапа НТР стали новейшие технологии, которых не было в середине ХХ века (в силу чего второй этап НТР получил даже наименование «научно-технологической революции»).

  1. гибкие автоматизированные производства,

  2. лазерная технология,

  3. биотехнологии и др.

Вместе с тем новый этап НТР не только не отбросил многие традиционные технологии, но позволил существенно повысить их эффективность. Например, гибкие автоматизированные производственные системы для обработки предмета труда по-прежнему используют традиционные резание и сварку, а применение новых конструкционных материалов (керамики, пластмасс) позволило существенно улучшить характеристики давно известного двигателя внутреннего сгорания. «Поднимая известные пределы многих традиционных технологий, современный этап научно-технического прогресса доводит их, как представляется сегодня, до «абсолютного» исчерпания заложенных в них возможностей и тем самым готовит предпосылки для еще более решительного переворота в развитии производительных сил».

Суть второго этапа НТР, определяемого как «научно-технологическая революция», заключается в объективно закономерном переходе от различного рода внешних, по преимуществу механических, воздействий на предметы труда к высокотехнологичным (субмикронным) воздействиям на уровне микроструктуры как неживой, так и живой материи. Поэтому не случайна та роль, которую приобрели на этом этапе НТР генная инженерия и нанотехнология.

Третий этап - последние десятилетия

1) расширение диапазона генной инженерии: от получения новых микроорганизмов с заранее заданными свойствами и до клонирования высших животных (а в возможной перспективе – и самого человека). Конец ХХ столетия ознаменовался небывалыми успехами в расшифровке генетической основы человека. В 1990 г. стартовал международный проект «Геном человека», ставящий целью получение полного генетической карты Homo sapiens. В этом проекте принимают участие более двадцати наиболее развитых в научном отношении стран, включая и Россию.

Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005-2010 гг.). Уже в канун нового, XXI века были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека – от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80-100 тысяч). Это ненамного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысячи). Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т.д.

2) еще одним из перспективнейших направлений в области новейших технологий является нанотехнология. Сферой нанотехнологии – одного из перспективнейших направлений в области новейших технологий – стали процессы и явления, происходящие в микромире, измеряемом нанометрами, т.е. миллиардными долями метра (один нанометр составляют примерно 10 атомов, расположенных вплотную один за другим). Еще в конце 50-х годов ХХ века крупный американский физик Р.Фейнман высказал предположение, что умение строить электрические цепи из нескольких атомов могло бы иметь «огромное количество технологических применений».

3) В дальнейшем исследования в области физики полупроводниковых наногетероструктур заложили основы новых информационных и коммуникационных технологий. Достигнутые успехи в этих исследованиях, имеющие огромное значение для развития оптоэлектроники и электроники высоких скоростей, были отмечены в 2000 году Нобелевской премией по физике, которую разделили российский ученый, академик Ж.А.Алферов и американские ученые Г.Кремер и Дж.Килби.

Высокие темпы роста в 80-х – 90-х годах ХХ века информационно-технологической индустрии явились следствием универсального характера использования информационных технологий, их широкого распространения практически во всех отраслях экономики. В ходе экономического развития эффективность материального производства стала во все большей степени определяться масштабами использования и качественным уровнем развития невещной сферы производства. Это означает, что в систему производства вовлекается новый ресурс – информация (научная, экономическая, технологическая, организационно-управленческая), которая, интегрируясь с производственным процессом, во многом ему предшествует, определяет его соответствие меняющимся условиям, завершает превращение производственных процессов в научно-производственные.

Начиная с 80-х годов ХХ века, сперва в японской, затем в западной экономической литературе получил распространение термин «софтизация экономики». Его происхождение связано с превращением невещного компонента информационно-вычислительных систем («мягких» средств программного, математического обеспечения) в решающий фактор повышения эффективности их использования (по сравнению с совершенствованием их вещной, «твердой» аппаратной части). Можно сказать, что «… возрастание влияния нематериальной составляющей на весь ход воспроизводства является сутью понятия софтизации».

Софтизация производства как новая технико-экономическая тенденция обозначила те функциональные сдвиги в хозяйственной практике, которые получили распространение в ходе развертывания второго этапа НТР. Отличительная черта этого этапа «… заключается в одновременном охвате практически всех элементов и стадий материального и нематериального производства, сферы потребления, создания предпосылок для нового уровня автоматизации. Этот уровень предусматривает объединение процессов разработки, производства и реализации продукции и услуг в единый непрерывный поток на базе взаимодействия развивающихся сегодня во многом самостоятельно таких направлений автоматизации, как информационно-вычислительные сети и банки данных, гибкие автоматизированные производства, системы автоматического проектирования, станки с ЧПУ, системы транспортировки и накопления изделий и управления технологическими процессами, робототехнологические комплексы. Основой для такой интеграции выступает широкое вовлечение в производственное потребление нового ресурса – информации, что открывает пути для трансформации дискретных ранее производственных процессов в непрерывные, создает предпосылки для отхода от тейлоризма. При компоновке автоматизированных систем используется модульный принцип, в результате чего проблема оперативного изменения, переналадки оборудования становится органической частью технологии и производится с минимальными издержками и практически без потерь времени».

Второй этап НТР оказался в значительной степени связанным с таким технологическим прорывом, как появление и быстрое распространение микропроцессоров на больших интегральных схемах (так называемая «микропроцессорная революция»). Это во много обусловило формирование мощного информационно-индустриального комплекса, включающего электронно-вычислительное машиностроение, микроэлектронную промышленность, производство электронных средств связи и разнообразного конторского и бытового оборудования. Указанный крупный комплекс отраслей промышленности и сферы услуг ориентирован на информационное обслуживание как общественного производства, так и личного потребления (персональный компьютер, например, уже превратился в обычный предмет домашнего длительного пользования).

Решительное вторжение микроэлектроники меняет состав основных фондов в нематериальном производстве, прежде всего, в кредитно-финансовой сфере, торговле, здравоохранении. Но этим не исчерпывается влияние микроэлектроники на сферу нематериального производства. Создаются новые отрасли, масштабы которых сопоставимы с отраслями материального производства. Например, в США реализация средств математического обеспечения и услуг, связанных с обслуживанием компьютеров, уже в 80-х годов превысила в денежном исчислении объемы производства таких крупных отраслей американской экономики, как авиа –, судо – или станкостроение.

На повестке дня современной науки – создание квантового компьютера (КК). Здесь существует несколько интенсивно разрабатываемых в настоящее время направлений: твердотельный КК на полупроводниковых структурах, жидкие компьютеры, КК на «квантовых нитях», на высокотемпературных полупроводниках и т.д. Фактически все разделы современной физики представлены в попытках решения этой задачи.

Можно проследить, какие изменения происходят в обществе под влиянием научно-технического прогресса. Изменения в структуре производства: сокращение занятости в материальном производстве.

Таким образом, современное общество не характеризуется очевидным падением доли материального производства и вряд ли может быть названо «обществом услуг». Мы же, говоря о снижении роли и значения материальных факторов, имеем в виду то, что все большую долю общественного богатства составляют не материальные условия производства и труд, а знания и информация, которые становятся основным ресурсом современного производства в любой его форме. Знания как непосредственная производительная сила становятся важнейшим фактором современного хозяйства, а создающий их сектор оказывается снабжающим хозяйство наиболее существенным и важным ресурсом производства. Происходит переход от расширения использования материальных ресурсов к сокращению потребности в них.

Развитие современного общества приводит не столько к замене производства материальных благ производством услуг, сколько к вытеснению материальных компонентов готового продукта информационными составляющими. Следствием этого становится снижение роли сырьевых ресурсов и труда как базовых производственных факторов, что является предпосылкой отхода от массового создания воспроизводимых благ как основы благосостояния общества. Демассификация и дематериализация производства представляют собой объективную составляющую процессов, ведущих к становлению постэкономического общества.

С другой стороны, на протяжении последних десятилетий идет и иной, не менее важный и значимый процесс. Мы имеем в виду снижение роли и значения материальных стимулов, побуждающих человека к производству.

Все сказанное позволяет сделать вывод, что научно-технический прогресс приводит к глобальной трансформации общества. Общество вступает в новую фазу своего развития, которую многие социологи определяют как «информационное общество».