Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UBA_11 / лекции бакалавр / I семестр / Лекция 12 нов.doc
Скачиваний:
23
Добавлен:
19.05.2015
Размер:
513.54 Кб
Скачать
  1. Теорема Гаусса для потока вектора и ее применение для расчета полей протяженных зарядов в вакууме.

Зная напряженность поля точечного заряда, и используя принцип суперпозиции, можно рассчитать напряженность поля, созданного несколькими точечными зарядами. Однако для протяженных зарядов применение принципа суперпозиции затруднительно. Метод расчета полей, созданных протяженными зарядами, был предложен немецким ученым Гауссом в начале 19 века.

Теорема Гаусса для электростатического поля в вакууме.

Рассмотрим поле точечного заряда в вакууме и вычислим через поверхность сферы радиуса

Напряженность поля в любой точке поверхности сферы

Т.к. численно равен числу линий вектора пересекающих эту поверхность, то, если вместо сферы взять любую другую замкнутую поверхность, поток останется тем же, т.к. все линии, проходящие через сферу, проходят и через эту поверхность. Таким образом, для любой замкнутой поверхности, заключающей в себе точечный заряд q

Если внутри замкнутой поверхности находятся N точечных зарядов, то согласно принципу суперпозиции:

если , то

поэтому

,

т.к. каждый интеграл .

теорема Гаусса для электростатического поля в вакууме. (1)

Поток вектора напряженности электростатического поля в вакууме через любую замкнутую поверхность прямо пропорционален алгебраической сумме зарядов, охватываемых этой поверхностью.

Суть метода Гаусса:

  1. охватывать участок, содержащий заряды, замкнутой поверхностью;

  2. выразить ФЕ через эту поверхность;

  3. выразить суммарный заряд через  или ;

  4. приравнять ФЕ суммарному заряду, деленному на 0;

  5. из полученного соотношения найти Е.

Поле бесконечной равномерно заряженной плоскости.

Поверхностная плотность заряда - физическая величина, равная заряду, приходящемуся на единицу площади равномерно заряженной поверхности.

Если поверхность заряжена неравномерно,

Поле такой поверхности однородно. Окружим элемент S этой поверхности замкнутой поверхностью в форме цилиндра. - поток через боковую поверхность равен нулю, т.к. линии не пересекают ее.

,

;

Поле 2-х бесконечных разноименно заряженных плоскостей

Полученный результат справедлив для плоскостей конечных размеров, расстояние между которыми мало по сравнению с их размерами (конденсатор).

Поле бесконечного равномерно заряженного цилиндра.

Линейная плотность заряда - физическая величина, численно равная заряду, приходящемуся на единицу длины равномерно заряженной нити.

Если нить заряжена неравномерно,

;

.

Поле равномерно заряженной сферы радиуса R

Соседние файлы в папке I семестр