Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лек.8Нечеткая логика нов.docx
Скачиваний:
118
Добавлен:
19.05.2015
Размер:
1.21 Mб
Скачать

Операции с нечеткими множествами

Определение операций, выполняемых с нечеткими множествами, во многом аналогично операциям с обычными (четкими) множествами.

Эквивалентность. Два нечетких множества А и В эквивалентны (это обозначается как ) тогда и только тогда, когда для всехимеет место.

Рис. 2.4. Операции с нечеткими множествами

Включение. Нечеткое множество А содержится в нечетком множестве В () тогда и только тогда, когда

Объединение, или дизъюнкция (disjunction), двух нечетких множеств А и В соответствует логической операции "ИЛИ" и определяется как наименьшее нечеткое множество, содержащее оба множества А и В. Функция принадлежности для этого множества находится с помощью операции взятия максимума (рис.2.4, б)

Пересечение, или конъюнкция (conjunction), соответствует логической операции "И" и определяется как наибольшее нечеткое множество, являющееся одновременно подмножеством обоих множеств.

Функция принадлежности множества выражается с помощью операции нахожденияминимума (рис. 2.4,в)

Дополнение (complement) нечеткого множества А, обозначаемое через (или ¯| А), соответствует логическому отрицанию "НЕ" и определяется формулой (рис. 2.4,г)

Легко видеть, что применительно к классическим "четким" множествам, для которых функции принадлежности принимают только 2 значения: 0 или 1, формулы определяют известные операции логического "ИЛИ", "И", "НЕ".

Приведем определения еще двух достаточно распространенных операций над нечеткими множествами – алгебраического произведения и алгебраической суммы нечетких множеств.

Алгебраическое произведение АВ нечетких множеств А и В определяется следующим образом:

Алгебраическая сумма :

Кроме перечисленных имеются и другие операции, которые оказываются полезными при работе с лингвистическими переменными.

Операция концентрации (concentration) CON(А) определяется как алгебраическое произведение нечеткого множества А на самого себя: т.е.

В результате применения этой операции к множеству А уменьшаются степени принадлежности элементов х этому множеству, причем если , то это уменьшение относительно мало, а для элементов с малой степенью принадлежности - относительно велико. В естественном языке применение этой операции к тому или иному значению лингвистической переменной А соответствует использованию усиливающего терма "очень" (например, "очень высокий", "очень старый" и т.д.).

Операция растяжения (dilation) DIL(A) определяется как

DIL(A)=A0,5, где

Действие этой операции противоположно действию операции концентрации и соответствует неопределенному терму "довольно", выполняющему функцию ослабления следующего за ним (основного) терма А: "довольно высокий", "довольно старый" и т.п.

Можно ввести и другие аналогичные по смыслу операции, позволяющие модифицировать значения лингвистической переменной, увеличивая, таким образом, их количество. Так, терм "более чем" можно определить следующим образом:

,

составной терм "очень-очень":

Рассмотрим применение указанных операций на следующем наглядном примере. Пусть переменная х характеризует "возраст человека", X - интервал [0,100]. Тогда нечеткие подмножества, описываемые термами "молодой" и "старый", можно представить с помощью функции принадлежности (рис. 2.5).

Рис. 2.5. Графическое представление лингвистической переменной “возраст человека"

Тогда, в соответствии с выражением, находим (рис. 2.5)

Точно так же, используя (2.10) и (2.14), получаем (рис. 2.5)

Например, если конкретному человеку исполнилось 55 лет (т.е. х = 55), то в соответствии с данными функциями принадлежности имеем:

До сих пор предполагалось, что речь идет о единственной переменной , принимающей значения на вещественной числовой оси.

Для случая двух вещественных переменных (и) можно говорить онечетком отношении R: XY, которое определяет некоторое соответствие между элементами множества X и множества У с помощью двумерной функции принадлежности μ(х,у):

Приведем еще один пример.

Допустим, что мы имеем два набора чисел

и пусть субъективные мнения экспертов о сравнительной величине этих чисел представлены в виде нечетких отношений:

R1(x,y) = "x больше, чем у",

R2(x,y) = "x приблизительно равно у".

Зададим отношение R1 с помощью табл.2.1, а отношение R2 - с помощью табл. 2.2.

Здесь (i,j) - й элемент таблицы равен значению соответствующей функции принадлежности для i-го значения х и j-гo значения у. Тогда операции объединения и пересечения указанных отношений могут быть интерпретированы как

Функции принадлежности ис помощью операций нахождения максимума и минимума, и принимают вид табл. 2.3, 2.4.