Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТРИЦЫ(раб.тетр) - правка.doc
Скачиваний:
414
Добавлен:
19.05.2015
Размер:
3.87 Mб
Скачать

§6. Квадратичные формы и их применения

1. Квадратичной формой переменных,принимающих числовые значения , называется числовая функция вида

,

где - числа, называемые коэффициентами квадратичной формы.

Матрицей квадратичной формы переменных, называется симметрическая матрица порядка, элементы главной диагонали которой совпадают с коэффициентами при квадратах переменных, а каждый недиагональный элемент, расположенный вой строкеом столбце, равен половине коэффициента при в квадратичной форме.

Рангом квадратичной формы называется ранг её матрицы. Квадратичная форма может быть записана в матричном виде где матрица квадратичной формы и .

Квадратичная форма называется канонической (имеет канонический вид), если коэффициенты при , то есть, если матрица квадратичной формы диагональная и следовательно

.,

где не все коэффициенты равны нулю.

ТЕОРЕМА (Лагранжа). Для всякой квадратичной формы существует такой базис, в котором квадратичная форма имеет канонический вид.

Нормальным видом квадратичной формы называется такой канонический вид, в котором коэффициенты при квадратах неизвестных (не считая нулевых) равны .

Квадратичная форма называется положительно (отрицательно) определённой, если при всех и положительно (отрицательно) полуопределённой, если при всех .

ТЕОРЕМА (критерий Сильвестра). Для того чтобы квадратичная форма была положительно определённой, необходимо и достаточно чтобы все угловые миноры матрицы квадратичной формы были положительны, то есть, чтобы

Здесь -угловые миноры матрицы квадратичной формы.

Следствие

Для того чтобы квадратичная форма была отрицательно определённой, необходимо и достаточно, чтобы знаки угловых миноров матрицы квадратичной формы чередовались следующим образом:

Типовые примеры

1. Привести квадратичную форму к каноническому виду методом Лагранжа и записать соответствующее преобразование

.

►Следуя алгоритму метода Лагранжа, выделим вначале в квадратичной форме все члены, содержащие , и дополним их до полного квадрата:

.

Сделаем в этом выражении замену и подставим его в квадратичную форму. Получим:

.

Далее выделим в члены, содержащие и проделаем с ними аналогичную процедуру:

Если положить , то квадратичная форма уже не будет содержать смешанных произведений. Примем также , тогда

канонический вид квадратичной формы есть

.

Соответствующее преобразование от переменных к переменным имеет вид:

.◄

2. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду, и записать соответствующий канонический вид этой формы:

.

►В исходном базисе матрица оператора, соответствующая данной квадратичной форме, есть

.

Эта матрица будет определять квадратичную форму канонического вида в ортонормированном базисе , составленном из собственных векторов матрицы . Найдем их. Характеристическое уравнение для матрицы имеет вид

.

Откуда следует

и .

Как известно собственные векторы матрицы находятся из уравнений

.

Для случая имеем:

.

Ранг матрицы этой системы уравнений (относительно ) равен 1. Следовательно, ФСР системы состоит из двух линейно независимых решений.

Как видно из данной системы, величина принимает произвольные значения, а величины связаны соотношением . В качестве собственных можно выбрать, например, векторы

Эти векторы ортогональны: (если бы они оказались не ортогональными, то их нужно было бы ортогонализировать с помощью стандартной процедуры). Вектор к тому же и нормирован. Откуда следует - . Нормируем теперь вектор:

.

Для случая уравнение, определяющее собственный вектор есть

.

Ранг матрицы этой системы уравнений равен 2. Следовательно она имеет одно линейно независимое решение, например, Отнормируем этот вектор: .

Теперь можно составить искомую матрицу ортогонального преобразования:

.

Исходная квадратичная форма будет иметь следующий канонический вид

.

При этом переменные связаны с переменными соотношением

или

.◄

3. Построить в прямоугольной системе координат фигуру, определяемую следующим уравнением, предварительно приведя его к каноническому виду

.

►Выделим в этом выражении квадратичную форму . Это три первых слагаемых уравнения .

Матрица квадратичной формы равна . Проведём процедуру приведения квадратичной формы к каноническому виду с помощью ортогонального преобразования. Характеристическое уравнение матрицы имеет вид

.

Его корни таковы: . Найдём теперь собственные векторы, соответствующие этим корням и ортонормируем их. Для вектора , соответствующего , имеем

В итоге собственный вектор, соответствующий , можно выбрать в виде

.

Аналогичная процедура для собственного вектора даёт:

Откуда:

.

После нормировки полученных векторов имеем:

.

Эти векторы представляют собой ортонормированный базис новой системы координат. Матрица ортогонального оператора, приводящего квадратичную форму к каноническому виду , есть

Связь старых и новых координат определяется соотношением .

Учитывая приведенные выражения, приведём заданную квадратичную форму к каноническому виду

. Это есть каноническое уравнение эллипса в системе координат ,которая получается из исходной её поворотом на угол и переносом начала координат в точку .◄

79