
- •Содержание
- •1.Единовременные платежи
- •1.1 Основные понятия
- •С I fVхема операции
- •1.2 Простые проценты
- •1.3 Сложные проценты
- •1.3.1 Формула сложных процентов
- •1.3.2 Определение будущей суммы
- •1.3.3 Определение текущей стоимости. Дисконтирование
- •1.3.4 Определение срока ссуды (вклада)
- •1.3.5 Определение размера процентной ставки
- •1.3.6 Номинальная и эффективная ставки
- •Типовые задачи
- •2. Постоянные регулярные потоки платежей
- •2.1 Основные понятия
- •Существует три основных вида операций.
- •2.2 Будущая сумма пренумерандо и постнумерандо без первоначальной суммы
- •2.2.1 Рента пренумерандо
- •2.2.2 Рента постнумерандо
- •2.3 Уравнение эквивалентности в общем виде
- •2.3.1 Определение будущей суммы
- •2.3.2 Определение текущей суммы
- •2.3.3 Определение периодических выплат
- •2.3.4 Расчет срока ренты
- •2.3.5 Определение размера процентной ставки
- •Типовые задачи
- •2.4 Решение финансовых задач с помощью финансовых функций Excel
- •2.4.1 Общие рекомендации
- •2.4.2 Вычисление будущего значения
- •2.4.3 Расчет текущей суммы
- •2.4.4 Расчет срока ренты
- •2.4.5 Определение размера процентной ставки
- •2.4.6. Выбор банка кредитования и составление плана погашения кредита
- •Функции для разработки планов погашения кредитов
- •Решение:
- •Лабораторная работа финансовые функции excel
- •1. Решить без использования встроенных функций
- •2. Решить, используя встроенные функции
- •Дополнительные задачи
- •Вопрос №2 (Обязательно привести свои примеры использования встроенных функций)
- •Варианты для самостоятельного решения
- •Список литературы
- •Форматы и назначение финансовых функций
2.2.2 Рента постнумерандо
Те же условия, что в разделе 2.2.1, но рента вносится в конце каждого периода – постнумерандо.
К концу первого периода сделан взнос С и FV1=С
К концу второго периода снова сделан взнос С, а на FV1 наросли проценты:
FV2=С+С·(1+r).
К концу третьего: FV3=С+С·(1+r)+С·(1+r)2 и т. д.
Будущая сумма к концу n-ого периода
.
Это
геометрическая прогрессия с первым
членом
1=С
и частным q=(1+r).
Следовательно,
.
Если взносы осуществляются m раз в году в течение k лет, то n=m·k
.
(19)
Формулы (18) и (19) можно объединить в одну.
(20)
Здесь тип=0, для взносов постумерандо,
тип=1, для взносов пренумерандо.
Очевидно, что при выплатах пренумерандо абсолютная величина будущей накопленной суммы больше.
Поскольку выплаты С и конечная сумма имеют, как правило, разные знаки (-С; -С;-С; FV) или (С; С;С; -FV), то их сводят в уравнение эквивалентности
(21)
В выражениях (18) – (21) величина m – это число взносов и начислений процентов в году.
При ежемесячных взносах m=12;
при ежеквартальных взносах m=4;
при взносах раз в полгода m=2;
при ежегодных взносах m=1.
Пример 10. Сколько денег можно накопить в банке в течение года, внося ежемесячно по300 руб. во вклад под 18% годовых? Первый случай – взносы постнумерандо (тип=0)
Второй случай –взносы пренумерандо (тип =1)
Если бы мы копили эти деньги в банке из под кофе, то в конце года имели бы только
FV=300*12=3600 руб.
Таким образом, в обоих случаях за счет процентов банк нам приплачивает в конце года больше трехсот руб. Однако во втором случае (выплаты в начале каждого месяца) мы получим почти на 60 руб. больше.
2.3 Уравнение эквивалентности в общем виде
В первом параграфе мы вывели уравнение эквивалентности (6) между одноразовым взносом и накопленной к концу срока финансовой сделки суммой FV при условии наращивания процентов по номинальной ставке r. В этом уравнении не учитывались периодические платежи С.
В параграфе 2.2.2 выведено уравнение эквивалентности (21), связывающее периодические платежи С и накопленную сумму FV при условии, что не было первоначального взноса PV.
В повседневных финансовых операциях накопления денег, кредитования, аннуитета фигурируют как первоначальные, так и периодические взносы.
Все эти ситуации описываются общим эквивалентным уравнением, объединяющим уравнения (6) и (21)
(22)
Из этого уравнения можно определить одну из величин как функцию остальных:
FV=f(PV,С,r,m,k) – будущую сумму в любой момент;
PV=f(FV,С,r,m,k) – текущую сумму, пересчитанную к любому моменту финансовой сделки;
С=f(PV,FV,r,m,k) – выплаты;
k=f(PV,FV,С,r,m) – срок договора;
r=f(PV,FV,С,m,k) – норму, годовую процентную ставку.
2.3.1 Определение будущей суммы
Пример 11. Изменим условия примера 10. Пусть в начале срока вложена сумма PV=1000 руб. Ежемесячно вносится еще по 300 руб. Годовая процентная ставка 18%. Как при этом изменятся суммы в конце года постнумерандо и пренумерандо.
1.Взносы постнумерандо.
2.Взносы пренумерандо.