
- •Глава 4 роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •4.1.7. Этиология и патогенез генных болезней
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •4.1.11. Методы изучения и диагностики наследственных патологий
- •Глава 4 / роль наследственности, конституции
- •Часть I. Общая нозология
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии133
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституции и возраста в патологии
- •Часть I. Общая нозология
- •Глава 4 / роль наследственности, конституци
Часть I. Общая нозология
надобятся R-логические, ультразвуковые, офтальмоскопические и некоторые другие параклинические методы исследования. Однако окончательная диагностика и выявление более тонких генетических вариантов исследованной патологии осуществляются с применением специальных лабораторных методов диагностики.
Лабораторные методы диагностики. Лабораторная диагностика наследственных болезней (фено- или генотипирование индивидов) в основе своей может быть направлена на идентификацию одной из трех «ступеней» болезни. Во-первых, это выявление этиологической причины наследственной патологии, или характеристика генотипа, т.е. определение конкретной мутации у индивида (генной, хромосомной, геномной). Эти цели достигаются с помощью цитоге-нетических или молекулярно-генетических методов. Во-вторых, лабораторные методы позволяют регистрировать первичный продукт гена (биохимические, иммунологические методы). В-третьих, возможна регистрация специфических метаболитов измененного обмена, возникших в процессе реализации патологического действия мутации (биохимические, иммунологические, цитологические методы регистрации на уровне жидкостей - кровь, моча, секрет или клеток).
Цитогенетические методы. Они предназначены для изучения структуры хромосомного набора или отдельных хромосом. Объектом цито-генетических наблюдений могут быть делящиеся соматические, мейотические и интерфазные клетки. Чаще исследования выполняются на соматических клетках: наиболее удобный объект - культура лимфоцитов периферической крови, но также и культура клеток из кусочков кожи (фибробласты), костного мозга, эмбриональных тканей, хориона, клеток амниотической жидкости.
Специальным образом полученные препараты из культуры клеток затем окрашиваются. Все методы окраски препаратов можно разделить на три группы: простые, дифференциальные, флюоресцентные.
Простая окраска (метод окраски по Гимзе или в русскоязычной литературе - «рутинная окраска») используется для ориентировочного определения числовых аномалий кариотипа. Струк-гурвые хромосомные аномалии (делеции, транс-юкации, инверсии), выявленные при простой ок-
раске, должны быть идентифицированы с помощью дифференциальной окраски. Под этим методом понимают способность хромосом к избирательному окрашиванию по длине с фиксацией в виде чередования эу- и гетерохроматических районов (темные и светлые полосы).
Благодаря успехам в молекулярной генетике человека разработан принципиально новый метод изучения хромосом - метод флюоресцентной гибридизации in situ (FISH). Он основан на использовании однонитевого специфического участка ДНК («зонда»), специальным образом «помеченного» и способного, после присоединения к участку анализируемой хромосомы, присоединить флюоресцентные красители (красный, зеленый и другие цвета). С помощью люминесцентного микроскопа окрашенные хромосомы визуализируются на фоне неокрашенных. Метод позволяет расшифровать сложные хромосомные перестройки, а также локализовать ген.
Биохимические методы. Эти методы направлены на выявление биохимического фенотипа организма - от первичного продукта гена (полипептидной цепи) до конечных метаболитов в моче или поте. Поэтому существует огромное разнообразие методов. Но для целей диагностики наследственных болезней оправданными являются две биохимические стратегии, которые позволяют определить дальнейший ход обследования и выбор соответствующих биохимических методов и тестов: массовые и селективные программы первичной биохимической диагностики наследственных болезней.
Массовые просеивающие программы применяются в диагностике фенилкетонурии, врожденного гипотиреоза, адреногенитального синдрома, врожденных аномалий нервной трубки и болезни Дауна. Селективные диагностические программы предусматривают проверку, уточнение биохимических аномалий обмена для пациентов, у которых подозреваются генные болезни, используя простые качественные реакции или более точные методы (тонкослойная хроматография мочи и крови, газовая хроматография, флюорометрические методики и др.).
Молекулярно-генетические методы. Это большая и разнообразная группа методов, предназначенных для выявления вариаций в структуре исследуемого участка ДНК (аллеля, гена, региона хромосомы) вплоть до расшифровки первичной последовательности нуклеотидных осно-
"лава 4 / РОЛЬ НАСЛЕДСТВЕННОСТИ, КОНСТИТУЦИИ И ВОЗРАСТА В ПАТОЛОГИИ
131
Таблица 19 Подходы к ДНК-диагностике наследственных болезней
Прямая диагностика мутаций |
- Детекция крупных перестроек (мутаций) генов методами блот-гибридизации с исполь зованием ДНК-зондов; - выявление крупных и мелких делеций генов ПЦР-амплификацией отдельных фрагмен тов, в том числе мультиплексной ПЦР; - детекция внутригенных мутаций, изменяющих сайты узнавания определенных рестрик- таз (и вследствие этого - размер фрагментов, выявляемых блот-гибридизацией или ПЦР-амплификацией); - аллель-специфическая гибридизация (амплификация) с использованием олигонуклео- тидов, комплементарных нормальной или мутантной последовательности ДНК; - детекция конформационного полиморфизма одноцепочечной ДНК (single strand conformation polymorphism); - метод детекции ошибок спаривания (cleavage mismatch detection); - гетеродуплексный анализ фрагментов гена; - секвенирование гена или его фрагмента |
Косвенная (непрямая) молекулярная диагностика |
Анализ косегрегации генетических маркеров (микро- и минисателлиты, ПДРФ), сцепленных с патологическим геном, и болезни в семьях |
ваний. Все разнообразие подходов для идентификации генов или определенных фрагментов ДНК и их вариаций основывается на двух основных методических разработках - технологии блот-гибридизации и амплификации отдельных участков ДНК.
Общая схема блот-гибридизации по Саузерну представлена на рис. 33 (метод назван по имени
Авторадиография
Детекция флуоресцентной метки Рис. 33. Блот-гибридизация по Саузерну
доктора из Эдинбурга Эдмунда Саузерна, а английское blot означает промокать).
В основу методики амплификации положена полимеразная цепная реакция (ПЦР), которая позволяет в течение нескольких часов выделить и размножить определенный фрагмент ДНК в количестве, превышающем исходное в 10е раз. Такая высокая степень направленного обогащения значительно упрощает работу с минимальными количествами ДНК-образцов. Реакция высоко специфична и чувствительна, позволяет исследовать единичную копию гена в исходном материале.
В табл.19 приводятся другие методы геноти-пирования, основанные главным образом на этих же двух технологиях, а также обозначены подходы к ДНК-диагностике болезней (прямая и косвенная диагностика).
Методы моделирования. Как и в других разделах биологии и медицины, в генетике человека и медицинской генетике широко применяются методы моделирования. Они разделяются на две группы: биологические и математические.
Для изучения многих моногенных болезней человека используются животные, несущие мутации в гомологичных генах. Они являются удобными моделями для исследования молекулярных основ патогенеза и отработки оптимальных вариантов лечения. С этой целью во многих питомниках мира созданы и поддерживаются коллекции генетических линий животных (мышей, крыс, кроликов, собак и др.). Мировая коллекция мышей насчитывает несколько сотен линий с моногенно наследуемыми дефектами.
132