Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GEK / Перечень вопросов 2014_ВКСС.docx
Скачиваний:
87
Добавлен:
18.05.2015
Размер:
2.66 Mб
Скачать

2) Централизованный режим доступа pcf

В том случае, когда в сети имеется станция, выполняющая функции точки доступа, может также применяться централизованный режим доступа PCF, обеспечивающий приоритетное обслуживание трафика. В этом случае говорят, что точка доступа играет роль арбитра среды.

Режим доступа PCF в сетях 802.11 сосуществует с режимом DCF. Оба режима координируются с помощью трех типов межкадровых интервалов

Рис. 8.4. Централизованный режим доступа PCF.

После освобождения среды каждая станция отсчитывает время простоя среды, сравнивая его с тремя значениями:

  • короткий межкадровый интервал (Short IFS - SIFS);

  • межкадровый интервал режима PCF (PIFS);

  • межкадровый интервал режима DCF (DIFS).

Захват среды с помощью распределенной процедуры DCF возможен только в том случае, когда среда свободна в течение времени, равного или большего, чем DIFS. То есть в качестве IFS в режиме DCF нужно использовать интервал DIFS - самый длительный период из трех возможных, что дает этому режиму самый низкий приоритет.

Межкадровый интервал SIFS имеет наименьшее значение, он служит для первоочередного захвата среды ответными CTS-кадрами или квитанциями, которые продолжают или завершают уже начавшуюся передачу кадра.

Значение межкадрового интервала PIFS больше, чем SIFS, но меньше, чем DIFS. Промежутком времени между завершением PIFS и DIFS пользуется арбитр среды. В этом промежутке он может передать специальный кадр, который говорит всем станциям, что начинается контролируемый период. Получив этот кадр, станции, которые хотели бы воспользоваться алгоритмом DCF для захвата среды, уже не могут этого сделать, они должны дожидаться окончания контролируемого периода. Его длительность объявляется в специальном кадре, но этот период может закончиться и раньше, если у станций нет чувствительного к задержкам трафика. В этом случае арбитр передает служебный кадр, после которого по истечении интервала DIFS начинает работать режим DCF.

На управляемом интервале реализуется централизованный метод доступа PCF. Арбитр выполняет процедуру опроса, чтобы по очереди предоставить каждой такой станции право на использование среды, направляя ей специальный кадр. Станция, получив такой кадр, может ответить другим кадром, который подтверждает прием специального кадра и одновременно передает данные (либо по адресу арбитра для транзитной передачи, либо непосредственно станции).

Для того чтобы какая-то доля среды всегда доставалась асинхронному трафику, длительность контролируемого периода ограничена. После его окончания арбитр передает соответствующий кадр и начинается неконтролируемый период.

Каждая станция может работать в режиме PCF, для этого она должна подписаться на данную услугу при присоединении к сети.

  1. Структурная организация корпоративных сетей.

Корпоративная сеть - система, обеспечивающая передачу информации между различными приложениями, используемыми в системе корпорации. Сеть должна быть максимально универсальной, то есть допускать интеграцию уже существующих и будущих приложений с минимально возможными затратами и ограничениями.

Корпоративная сеть, как правило, является территориально распределенной, т.е. объединяющей офисы, подразделения и другие структуры, находящиеся на значительном удалении друг от друга. Часто узлы корпоративной сети оказываются расположенными в различных городах, а иногда и странах. Принципы, по которым строится такая сеть, достаточно сильно отличаются от тех, что используются при создании локальной сети, даже охватывающей несколько зданий. Основное отличие состит в том, что территориально распределенные сети используют достаточно медленные (на сегодня - десятки и сотни килобит в секунду, иногда до 2 Мбит/с.) арендованные линии связи. Если при создании локальной сети основные затраты приходятся на закупку оборудования и прокладку кабеля, то в территориально-распределенных сетях наиболее существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных. Это ограничение является принципиальным, и при проектировании корпоративной сети следует предпринимать все меры для минимизации объемов передаваемых данных. В остальном же корпоративная сеть не должна вносить ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию.

Первая проблема, которую приходится решать при создании корпоративной сети - организация каналов связи. Если в пределах одного города можно рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится просто астрономической, а качество и надежность их часто оказывается весьма невысокими.

Естественным решением этой проблемы является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя. Даже при создании небольшой сети в пределах одного города следует иметь в виду возможность дальнейшего расширения и использовать технологии, совместимые с существующими глобальными сетями. Часто первой, а то и единственной такой сетью, мысль о которой приходит в голову, оказывается Internet.

Корпоративные сети, как правило, развиваются вместе с развитием предприятия, поэтому наблюдается некая хаотичность в построении таких сетей, зачастую добавляются новые абоненты, серверы, сети отделов, которые не наносятся на первычный план сети. Всвязи с этим управление такой сетью усложняется, поиск неисправностей и сбоев занимает много времени, чтобы избежать этого необходимо планировать развитие сети, предусматривать выделение сетей отделов, кампусов, групп и т.д. Очень часто при построении больших сетей использование типовых структур сетей порождает ряд ограничений, основными из которых являются:

  1. ограничение на длину связи между абонентами или узлами;

  2. ограничение на количество узлов в сети;

  3. ограничение на интенсивность траффика порождаемого узлами;

  4. сложность обслуживания сетей.

Структуризация корпоративных сетей.

Для расширения количества абонентов в сети, можно использовать повторители (hub).

Рис. 11.1. Структура сети с повторителями.

Однако, в случае интенсивного обмена такой принцип не приемлим, кроме того наличие протяженного общего канала снижает надежность сети. Для повышения надежности, можно использовать звездообразную топологию: Рис. 11.2. Звездообразная топология.

В работе концентраторов (switch) любых технологий, много общего, они повторяют сигнал пришедший с одних портов на другие свои порты. Небольшие корпоративные сети можно строить с использованием нескольких концентраторов: Рис. 11.3. Сеть с несколькими концентраторами.

Что бы разгрузить линию, вместь К5 используют мост (он фильтрует пакеты). В дальнейшем используют маршрутизатор. Он имеет специальные порты для выхода в глобальные сети. Для соединения сетей с различными протоколами используют шлюзы. Структуризацию можно выполнить покомнатно, поэтажно, по зданиям, по площадкам. Для соединения отдельных подсетей могут использоваться распределенные магистрали или стянутые в точку магистрали. Рис. 11.4. Структуризация сети по этажам.

В качестве позвоночника можно использовать маршрутизатор.

Рис. 11.5. Структуризация через маршрутизатор.

Сети рабочих групп и отделов.

Сети отделов – это такие сети, которые используются сравнительно небольшой группой сотрудников, работающих в одном отделе предприятия. Количество компьютеров и других вычислительных стедств в таких сетях порядка 50-60 штук. Главной целью сети отдела, является разделение локальных ресурсов: приложения, данные, принтеры и модемы, между собой. Обычно сети отделов имеют: 1-2 файловых сервера, сервер печати, сервер приложений. Упрощенную структуру можно представить следующим образом:

  Рис. 11.6. Структура сети отдела.

Сети отделов обычно создаются на основе одной технологии. Для такой сети характерен один или два типа операционных систем. Задачи управления сетью на уровне отдела просты и сводятся к добавлению или исключению пользовательских станций, инсталляции новых узлов и установке новых версий операционной системы. Специального администратора не назначают, а указанные функции возлагают на одного из сотрудников.

Более мелкой единицей, являются сети рабочих групп, в таких сетях порядка 10-20 рабочих станций.

Сеть кампусов это сеть предприятия, подразделения которого располагаются на небольшой территории. Количество рабочих станций до 1000, территория порядка нескольких квадратных километров. Особенностями таких сетей являются:

  1. Они объединяют сети различных отделов одного предприятия, в пределах одного здания или нескольких рядом располагающихся.

  2. Наличие специальных служб в сети, обеспечивающих взаимодействие между программными и аппаратными средствами отдельно от сетей.

Структурно сеть можно представить:

Рис. 11.7. Сеть кампуса.

По сравнению с сетями отделов, данная является составной, может включать компьютеры разных фирм с разными операционными системами. Технологии отдельных подсетей могут быть разные. Необходимо решать проблемы сопряжения неоднородных элементов в единую интегрированную сеть. Администратор сети должен быть высококвалифицированный, а средства оперативного управления сетью более совершенными. Глобальные связи не используются.

Корпоративными сетями называются сети масштаба предприятий. Данные сети объединяют более 1000 компьютеров, отдельные площадки могут находиться друг от друга на значительном расстоянии, поэтому в них часто используют глобальные связи. Для этого могут использоваться следующие линии связи: телефонный канал, радио канал, спутниковая связь, телеграфная связь. Такую сеть можно представить в виде островков локальных сетей, объединенных различными телекоммуникационными средствами. Структурно сеть можно представить:

Рис. 11.8. Сеть предприятия.

Корпоративные сети могут объединять города, регионы и даже континенты. Они могут использовать глобальные связзи для соединения локальных сетей или отдельных компьютеров. К наиболее существенным особенностям корпоративных сетей можно отнести: 1) гетерогенность (неоднородность оборудования, протоколов, операционных систем, приложений); 2) использование разнообразных глобальных связей; 3) интегрированность (работа неоднородных элементов как единое целое); 4) повышенные требования к надежности (выполняются важные функции); 5) масштабность системы; 6) повышенные требования к управляемости сети; 7) широта охвата технических проблем при развертывании и эксплуатации;

8) потребность в наличии специалистов различных профилей, для обслуживания.

  1. Коммуникационное оборудование корпоративных сетей.

К корпоративным сетям относят сети масштаба предприятия. Корпоративные сети могут объединять города, регионы и даже континенты. Данные сети объединяют как правило более 1000 компьютеров. При таком количестве уже невозможно обходиться без такого класса коммуникационного оборудования, как шлюзы и маршрутизаторы.

Маршрутизаторы.

Основная функция маршрутизатора - чтение заголовков пакетов сетевых протоколов, принимаемых и буферизуемых по каждому порту (например, IPX, IP, AppleTalk или DECnet), и принятие решения о дальнейшем маршруте следования пакета по его сетевому адресу, включающему, как правило, номер сети и номер узла.

Функции маршрутизатора могут быть разбиты на 3 группы в соответствии с уровнями модели OSI (рис. 12.6).

Рис. 12.6. Функциональная модель маршрутизатора

На нижнем уровне маршрутизатор, как и любое устройство, подключенное к сети, обеспечивает физический интерфейс со средой передачи, включая согласование уровней электрических сигналов, линейное и логическое кодирование, оснащение определенным типом разъема. В разных моделях маршрутизаторов часто предусматриваются различные наборы физических интерфейсов, представляющих собой комбинацию портов для подсоединения локальных и глобальных сетей. С каждым интерфейсом для подключения локальной сети неразрывно связан определенный протокол канального уровня - например, Ethernet, Token Ring, FDDI. Интерфейсы для присоединения к глобальным сетям чаще всего определяют только некоторый стандарт физического уровня, над которым в маршрутизаторе могут работать различные протоколы канального уровня. Например, глобальный порт может поддерживать интерфейс V.35, над которым могут работать протоколы канального уровня: LAP-B (используемый в сетях X.25), LAP-F (используемый в сетях frame relay), LAP-D (используемый в сетях ISDN). Разница между интерфейсами локальных и глобальных сетей объясняется тем, что технологии локальных сетей работают по собственным стандартам физического уровня, которые не могут, как правило, использоваться в других технологиях, поэтому интерфейс для локальной сети представляет собой сочетание физического и канального уровней и носит название по имени соответствующей технологии - например, интерфейс Ethernet.

Интерфейсы маршрутизатора выполняют полный набор функций физического и канального уровней по передаче кадра, включая получение доступа к среде (если это необходимо), формирование битовых сигналов, прием кадра, подсчет его контрольной суммы и передачу поля данных кадра верхнему уровню, в случае если контрольная сумма имеет корректное значение.

Перечень физических интерфейсов, которые поддерживает та или иная модель маршрутизатора, является его важнейшей потребительской характеристикой. Маршрутизатор должен поддерживать все протоколы канального и физического уровней, используемые в каждой из сетей, к которым он будет непосредственно присоединен. На рис. 5.3 показана функциональная модель маршрутизатора с четырьмя портами, реализующими следующие физические интерфейсы: 10Base-T и 10Base-2 для двух портов Ethernet, UTP для Token Ring и V.35, над которым могут работать протоколы LAP-B, LAP-D или LAP-F, обеспечивая подключение к сетям Х.25, ISDN или frame relay.

Кадры, которые поступают на порты маршрутизатора, после обработки соответствующими протоколами физического и канального уровней, освобождаются от заголовков канального уровня. Извлеченные из поля данных кадра пакеты передаются модулю сетевого протокола.

Сетевой протокол в свою очередь извлекает из пакета заголовок сетевого уровня и анализирует содержимое его полей. Прежде всего проверяется контрольная сумма, и если пакет пришел поврежденным, то он отбрасывается. Выполняется проверка, не превысило ли время, которое провел пакет в сети (время жизни пакета), допустимой величины. Если превысило - то пакет также отбрасывается. На этом этапе вносятся корректировки в содержимое некоторых полей, например, наращивается время жизни пакета, пересчитывается контрольная сумма.

На сетевом уровне выполняется одна из важнейших функций маршрутизатора - фильтрация трафика. Маршрутизатор, обладая более высоким интеллектом, нежели мосты и коммутаторы, позволяет задавать и может отрабатывать значительно более сложные правила фильтрации. Пакет сетевого уровня, находящийся в поле данных кадра, для мостов/коммутаторов представляется неструктурированной двоичной последовательностью. Маршрутизаторы же, программное обеспечение которых содержит модуль сетевого протокола, способны производить разбор и анализ отдельных полей пакета. Они оснащаются развитыми средствами пользовательского интерфейса, которые позволяют администратору без особых усилий задавать сложные правила фильтрации. Они, например, могут запретить прохождение в корпоративную сеть всех пакетов, кроме пакетов, поступающих из подсетей этого же предприятия. Фильтрация в данном случае производится по сетевым адресам, и все пакеты, адреса которых не входят в разрешенный диапазон, отбрасываются. Маршрутизаторы, как правило, также могут анализировать структуру сообщений транспортного уровня, поэтому фильтры могут не пропускать в сеть сообщения определенных прикладных служб, например службы tehet, анализируя поле типа протокола в транспортном сообщении.

В случае если интенсивность поступления пакетов выше интенсивности, с которой они обрабатываются, пакеты могут образовать очередь. Программное обеспечение маршрутизатора может реализовать различные дисциплины обслуживания очередей пакетов: в порядке поступления по принципу «первый пришел - первым обслужен» (First Input First Output, FIFO), случайное раннее обнаружение, когда обслуживание идет по правилу FIFO, но при достижении длиной очереди некоторого порогового значения вновь поступающие пакеты отбрасываются (Random Early Detection, RED), а также различные варианты приоритетного обслуживания.

К сетевому уровню относится основная функция маршрутизатора - определение маршрута пакета. По номеру сети, извлеченному из заголовка пакета, модуль сетевого протокола находит в таблице маршрутизации строку, содержащую сетевой адрес следующего маршрутизатора, и номер порта, на который нужно передать данный пакет, чтобы он двигался в правильном направлении. Если в таблице отсутствует запись о сети назначения пакета и к тому же нет записи о маршрутизаторе по умолчанию, то данный пакет отбрасывается.

Перед тем как передать сетевой адрес следующего маршрутизатора на канальный уровень, необходимо преобразовать его в локальный адрес той технологии, которая используется в сети, содержащей следующий маршрутизатор. Для этого сетевой протокол обращается к протоколу разрешения адресов. Протоколы этого типа устанавливают соответствие между сетевыми и локальными адресами либо на основании заранее составленных таблиц, либо путем рассылки широковещательных запросов. Таблица соответствия локальных адресов сетевым адресам строится отдельно для каждого сетевого интерфейса. Протоколы разрешения адресов занимают промежуточное положение между сетевым и канальным уровнями.

С сетевого уровня пакет, локальный адрес следующего маршрутизатора и номер порта маршрутизатора передаются вниз, канальному уровню. На основании указанного номера порта осуществляется коммутация с одним из интерфейсов маршрутизатора, средствами которого выполняется упаковка пакета в кадр соответствующего формата. В поле адреса назначения заголовка кадра помещается локальный адрес следующего маршрутизатора. Готовый кадр отправляется в сеть.

Сетевые протоколы активно используют в своей работе таблицу маршрутизации, но ни ее построением, ни поддержанием ее содержимого не занимаются. Эти функции выполняют протоколы маршрутизации. На основании этих протоколов маршрутизаторы обмениваются информацией о топологии сети, а затем анализируют полученные сведения, определяя наилучшие по тем или иным критериям маршруты. Результаты анализа и составляют содержимое таблиц маршрутизации.

Помимо перечисленных выше функций, на маршрутизаторы могут быть возложены и другие обязанности, например операции, связанные с фрагментацией.

Шлюзы.

Сетевой шлюз — аппаратный маршрутизатор или программное обеспечение для сопряжения компьютерных сетей, использующих разные протоколы (например, локальной и глобальной). Сетевой шлюз конвертирует протоколы одного типа физической среды в протоколы другой физической среды (сети). Например, при соединении локального компьютера с сетью Интернет вы используете сетевой шлюз.

Роутеры (маршрутизаторы) являются одним из примеров аппаратных сетевых шлюзов.

Сетевые шлюзы работают на всех известных операционных системах. Основная задача сетевого шлюза — конвертировать протокол между сетями. Роутер сам по себе принимает, проводит и отправляет пакеты только среди сетей, использующих одинаковые протоколы. Сетевой шлюз может с одной стороны принять пакет, сформатированный под один протокол (например Apple Talk) и конвертировать в пакет другого протокола (например TCP/IP) перед отправкой в другой сегмент сети. Сетевые шлюзы могут быть аппаратным решением, программным обеспечением или тем и другим вместе, но обычно это программное обеспечение, установленное на роутер или компьютер. Сетевой шлюз должен понимать все протоколы, используемые роутером. Обычно сетевые шлюзы работают медленнее, чем сетевые мосты, коммутаторы и обычные роутеры. Сетевой шлюз — это точка сети, которая служит выходом в другую сеть. В сети Интернет узлом или конечной точкой может быть или сетевой шлюз, или хост. Интернет-пользователи и компьютеры, которые доставляют веб-страницы пользователям — это хосты, а узлы между различными сетями — это сетевые шлюзы. Например, сервер, контролирующий трафик между локальной сетью компании и сетью Интернет — это сетевой шлюз.

В крупных сетях сервер, работающий как сетевой шлюз, обычно интегрирован с прокси-сервером и межсетевым экраном. Сетевой шлюз часто объединен с роутером, который управляет распределением и конвертацией пакетов в сети.

Сетевой шлюз может быть специальным аппаратным роутером или программным обеспечением, установленным на обычный сервер или персональный компьютер. Большинство компьютерных операционных систем использует термины, описанные выше. Компьютеры под Windows обычно используют встроенный мастер подключения к сети, который по указанным параметрам сам устанавливает соединение с локальной или глобальной сетью. Такие системы могут также использовать DHCP-протокол. Dynamic Host Configuration Protocol (DHCP) - это протокол, который обычно используется сетевым оборудованием чтобы получить различные данные, необходимые клиенту для работы с протоколом IP. С использованием этого протокола добавление новых устройств и сетей становится простым и практически автоматическим.