
- •Лекции по курсу
- •2. Литература, необходимая для изучения курса.
- •3.Цели и задачи дисциплины.
- •4.Требования к уровню освоения содержания дисциплины.
- •5.Структура современного естествознания.
- •6.Методология естествознания.
- •7.История естествознания.
- •1. Пространство и время
- •2. Механическая форма движения материи. Основы классической механики
- •3. Релятивистская концепция механического движения. Представления специальной теории относительности
- •4. Понятие об общей теории относительности. Влияние гравитации на пространство и время
- •5. Масштабы пространства, времени.
- •6. Современные представления о структуре и эволюции Вселенной
- •1. Ритм как упорядочение времени
- •2. Космические и биологические ритмы
- •3. Общая характеристика колебаний
- •4. Виды колебаний
- •5. Общая характеристика волны
- •6. Упругие волны
- •7. Электромагнитные волны
- •8. Волновые явления
- •1. Симметрия
- •2. Законы сохранения
- •3. Фундаментальные взаимодействия
- •4. Развитие представлений о физических полях
- •5. Концепция обменного взаимодействия
- •6. Концепция корпускулярно-волнового дуализма в современной физике
- •7. Основные положения квантовой механики
- •8. Структура микромира
- •1. Термодинамический и статистический методы описания систем
- •2. Общие свойства систем. Системный подход
- •3. Основы равновесной термодинамики (термодинамики изолированных систем)
- •4. Основы неравновесной термодинамики
- •5. Термодинамика сильно неравновесных систем
- •6. Эволюция самоорганизующихся систем
- •Активная
- •7. Синергетика и экономика
- •1. Предмет химии
- •2. Основные понятия и законы классической химии
- •3. Систематизация химических элементов. Периодический закон д.И.Менделеева
- •4. Особенности развития химии на рубеже хiх-хх вв.
- •5. Развитие химического атомизма в первой половине XX в. Квантовый уровень химии
- •6. Концепция химической эволюции
- •1. Экология как наука о взаимоотношении живых систем с неживой природой
- •2.Структура и основные направления развития экологии
- •Экология
- •Фундаментальная
- •3.Биосфера.
- •4.Экосистемы и основы их жизнедеятельности
- •Биотические компоненты экосистемы
- •5.Экологические факторы.
- •6.Глобальные проблемы современности.
- •Загрязнение
- •1. Общая характеристика живых систем
- •2. Молекулярно-генетический уровень организации биологических систем
- •3. Клеточный уровень организации жизни
- •4. Онтогенетический уровень организации биологических систем
- •5. Популяционно-видовой уровень
- •7. Биосферный уровень
- •8. Развитие представлений о биологической эволюции
- •9. Основные этапы эволюции жизни
- •Словарь терминов
- •Литература
2. Механическая форма движения материи. Основы классической механики
Движение - основное свойство материи, включающее в себя любое изменение.
Рассматривают различные формы движения: физические, биологические, социальные и др. Носителями их являются различные материальные образования. Простейшая форма – механическое движение - свойственна любым материальным объектам. Это - изменение положения в пространстве с течением времени.
Изучение механического движения осуществляется на основе двух подходов: кинематического (кинематики), описывающего движение без анализа причин его вызывающих, и динамического (динамики), исследующей причины данного вида движения.
М
(x,y,z)
Основные
кинематические характеристики движения
некоторой точки: радиус-вектор ()
– вектор, определяющий положение объекта
(материальной точки) в системе координат
(рис. 1):
;
(1)
перемещение
– изменение радиуса-вектора ();
скорость – векторная величина, мера быстроты движения, численно равная производной от радиуса-вектора по времени:
;
(2)
ускорение – векторная величина, мера быстроты изменения скорости, в простейшем случае равная отношению изменения скорости ко времени изменения:
;
(3)
Фундаментальным свойством движения является его относительность. Она выражается в том, что для его параметры зависят от выбора системы отсчета: связанной с телом отсчета системы координат и выбранного способа измерения времени. Таким образом, положение объекта (координаты), скорость, вид траектории зависят от того, в какой системе отсчета они рассматриваются. Согласно сформулированному Галилеем принципу инерции существуют системы отсчета, в которых тела движутся без ускорения (равномерно и прямолинейно) при отсутствии действия других тел. Такие системы отсчета называются инерциальными. Начало координат этих систем связано с телом, свободным от действия других тел. Инерциальные системы отсчета – идеализация. Если масштаб движения намного меньше размеров Земли, геоцентрическая система может считаться инерциальной. С большим основанием таковой считается гелиоцентрическая система отсчета, еще ближе к инерциальной система, связанная с удаленными звездами. Для инерциальных систем отсчета справедлив принцип относительности Галилея: никакими механическими опытами, производящимися в какой-либо инерциальной системе отсчета, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Другими словами, все инерциальные системы отсчета в отношении механических явлений физически равноправны, законы механики в них имеют одинаковую форму (абсолютны).
Относительность скорости обусловливает классический закон сложения скоростей (при переходе из одной системы отсчета в другую): скорость тела в любой системе отсчета определяется векторной суммой скоростей:
;
(4)
здесь
- скорость тела в одной системе отсчета
(покоящейся),
- скорость в другой системе (движущейся),
- скорость движущейся системы относительно
покоящейся.
Динамическое
описание выявляет причину изменения
механического движения - взаимодействие
тел, которое количественно измеряется
вектором силы
.
Подробнее о взаимодействии речь пойдет
ниже. Другие важнейшие динамические
характеристики, определяющие механическое
движение: масса m - скалярная величина,
мера инертности тел (инертность
– способность препятствовать изменению
скорости); импульс
– векторная величина, мера механического
движения, численно равная произведению
массы и скорости:
.
(5)
Импульс характеризует состояние механического движения тела в данный момент времени, положение тела в выбранной системе отсчета задается координатами. Эти параметры полностью определяют механическое состояние объекта.
Динамические и кинематические параметры движения связаны между собой. Эта связь представляет собой основные законы движения, сформулированные Ньютоном и составляющие суть классической механики.
I закон Ньютона представляет собой принцип инерции Галилея: если на тело не действует сила, то оно находится в покое или в состоянии прямолинейного равномерного движения.
II закон Ньютона: ускорение тела, приобретаемое при взаимодействии с другими телами, определяется отношением равнодействующей сил к массе.
(6)
(здесь
- равнодействующая сил)
III закон Ньтона: два тела действуют друг на друга силами одной природы, равными по величине и противоположными по направлению.
Классическая механика продемонстрировала единство законов движения «земных» и «небесных» объектов, что особенно отчетливо проявляет закон всемирного тяготения, описывающий гравитационное взаимодействие и занимающий одно из важнейших мест в ньютоновской механической картине мира: два точечных объекта притягиваются друг к другу с силой, пропорциональной их массам (m1 и m2) и обратно пропорциональной квадрату расстояния r между ними
.
(7)
Здесь G - универсальная константа, называемая гравитационной постоянной, G= 6,67·10-11 м3/кг·с2. Всемирное тяготение – основное взаимодействие в масштабах бесконечной Вселенной, управляющее ее движением. Масса тел определяет их способности притягивать и притягиваться. Эта масса называется гравитационной. Численно она равна инертной массе, определяющей ускорение в соответствии со II-ым законом Ньютона (6).
В инерциальных системах отсчета силы и ускорения – абсолютны, а связь их не зависит от выбора системы отсчета, что определяется принципом относительности Галилея.
Следует отметить, что законы Ньютона инвариантны относительно изменения знака времени, т.е. в них физически не отрицается обратный ход времени, не выявляется его необратимость.
Механика Ньютона позволяет однозначно описать механическое состояние системы в любой момент времени по известным начальным параметрам и условиям движения: восстановить прошлое состояние и предсказать будущее. Эта теория – основа детерминизма, предложенного Лапласом (1749 – 1827) в качестве главного принципа устройства мира – принципа, распространяемого на все явления (физические, биологические, социальные, космологические): у любого явления есть причина, которая однозначно определяет следствие, следовательно, в природе нет места случайности.