
- •Лекции по курсу
- •2. Литература, необходимая для изучения курса.
- •3.Цели и задачи дисциплины.
- •4.Требования к уровню освоения содержания дисциплины.
- •5.Структура современного естествознания.
- •6.Методология естествознания.
- •7.История естествознания.
- •1. Пространство и время
- •2. Механическая форма движения материи. Основы классической механики
- •3. Релятивистская концепция механического движения. Представления специальной теории относительности
- •4. Понятие об общей теории относительности. Влияние гравитации на пространство и время
- •5. Масштабы пространства, времени.
- •6. Современные представления о структуре и эволюции Вселенной
- •1. Ритм как упорядочение времени
- •2. Космические и биологические ритмы
- •3. Общая характеристика колебаний
- •4. Виды колебаний
- •5. Общая характеристика волны
- •6. Упругие волны
- •7. Электромагнитные волны
- •8. Волновые явления
- •1. Симметрия
- •2. Законы сохранения
- •3. Фундаментальные взаимодействия
- •4. Развитие представлений о физических полях
- •5. Концепция обменного взаимодействия
- •6. Концепция корпускулярно-волнового дуализма в современной физике
- •7. Основные положения квантовой механики
- •8. Структура микромира
- •1. Термодинамический и статистический методы описания систем
- •2. Общие свойства систем. Системный подход
- •3. Основы равновесной термодинамики (термодинамики изолированных систем)
- •4. Основы неравновесной термодинамики
- •5. Термодинамика сильно неравновесных систем
- •6. Эволюция самоорганизующихся систем
- •Активная
- •7. Синергетика и экономика
- •1. Предмет химии
- •2. Основные понятия и законы классической химии
- •3. Систематизация химических элементов. Периодический закон д.И.Менделеева
- •4. Особенности развития химии на рубеже хiх-хх вв.
- •5. Развитие химического атомизма в первой половине XX в. Квантовый уровень химии
- •6. Концепция химической эволюции
- •1. Экология как наука о взаимоотношении живых систем с неживой природой
- •2.Структура и основные направления развития экологии
- •Экология
- •Фундаментальная
- •3.Биосфера.
- •4.Экосистемы и основы их жизнедеятельности
- •Биотические компоненты экосистемы
- •5.Экологические факторы.
- •6.Глобальные проблемы современности.
- •Загрязнение
- •1. Общая характеристика живых систем
- •2. Молекулярно-генетический уровень организации биологических систем
- •3. Клеточный уровень организации жизни
- •4. Онтогенетический уровень организации биологических систем
- •5. Популяционно-видовой уровень
- •7. Биосферный уровень
- •8. Развитие представлений о биологической эволюции
- •9. Основные этапы эволюции жизни
- •Словарь терминов
- •Литература
4. Виды колебаний
Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.
Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.
Свободные
колебания
совершаются в системе, однократно
выведенной из положения равновесия и
в дальнейшем предоставленной самой
себе. При этом колебания происходят с
собственной
частотой (),
которая не зависит от их амплитуды, т.е.
определяется свойствами самой системы.
В реальных условиях колебания всегда являются затухающими, т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.
Для
создания незатухающих колебаний в
реальных системах необходимо периодическое
внешнее воздействие – периодическое
пополнение энергии, теряемой за счет
диссипации. Гармонические
колебания, происходящие за счет внешнего
периодического воздействия («вынуждающей
силы»), называются
вынужденными.
Их частота совпадает с частотой
вынуждающей силы (),
а амплитуда оказывается зависящей от
соотношения между частотой силы и
собственной частотой системы. Важнейшим
эффектом, осуществляющимся при вынужденных
колебаниях, является резонанс
– резкое
возрастание амплитуды при приближении
частоты вынужденных колебаний к
собственной частоте колебательной
системы.
Резонансная
частота тем ближе к собственной, а
максимум амплитуды тем больше, чем
меньше диссипация.
Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:
колебательную систему (с затуханием),
усилитель колебаний (источник энергии),
нелинейный ограничитель (клапан),
звено обратной связи
При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.
Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.